【題目】省環(huán)保廳對三個城市同時進行了多天的空氣質量監(jiān)測,測得三個城市空氣質量為優(yōu)或良的數(shù)據共有180個,三城市各自空氣質量為優(yōu)或良的數(shù)據個數(shù)如下表所示:

優(yōu)(個)

28

良(個)

32

30

已知在這180個數(shù)據中隨機抽取一個,恰好抽到記錄城市空氣質量為優(yōu)的數(shù)據的概率為0.2.

(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據中抽取30個進行后續(xù)分析,求在城中應抽取的數(shù)據的個數(shù);

(2)已知, ,求在城中空氣質量為優(yōu)的天數(shù)大于空氣質量為良的天數(shù)的概率.

【答案】(1)9;(2).

【解析】試題分析(1)計算出,再由總數(shù)計算出,按比例計算得應抽人數(shù).(2) 由(1)知 ,利用列舉法和古典概型計算公式計算得相應的概率.

試題解析】

(1)由題意得,即.

,

∴在城中應抽取的數(shù)據個數(shù)為.

(2)由(1)知 , ,

∴滿足條件的數(shù)對可能的結果有 , , , , , 共8種.

其中“空氣質量為優(yōu)的天數(shù)大于空氣質量為良的天數(shù)”對應的結果有, 共3種.

∴在城中空氣質量為優(yōu)的天數(shù)大于空氣質量為良的天數(shù)的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求,判斷函數(shù)的單調性并證明.

2)對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中國詩詞大會》(二季)亮點頗多,十場比賽每場都有一首特別設計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】紅隊隊員甲、乙、丙與藍隊隊員,,進行圍棋比賽,甲對,乙對,丙對各一盤.已知甲勝、乙勝、丙勝的概率分別為0.6,0.50.5,假設各盤比賽結果相互獨立,則紅隊至少兩名隊員獲勝的概率是____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年6月14日,第二十一屆世界杯尼球賽在俄羅斯拉開了帷幕,某大學在二年級作了問卷調查,從該校二年級學生中抽取了人進行調查,其中女生中對足球運動有興趣的占,而男生有人表示對足球運動沒有興趣.

(1)完成列聯(lián)表,并回答能否有的把握認為“對足球是否有興趣與性別有關”?

有興趣

沒有興趣

合計

合計

(2)若將頻率視為概率,現(xiàn)再從該校二年級全體學生中,采用隨機抽樣的方法每飲抽取名學生,抽取次,記被抽取的名學生中對足球有興趣的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列和數(shù)學期望.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,點到兩點的距離之和為4,設點的軌跡為,直線交于兩點。

(Ⅰ)寫出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B分別是橢圓的左、右頂點,P為橢圓C的下頂點,F為其右焦點M是橢圓C上異于A、B的任一動點,過點A作直線以線段AF為直徑的圓交直線AM于點A、N,連接FN交直線l于點G的坐標為,且,橢圓C的離心率為

求橢圓C的方程;

試問在x軸上是否存在一個定點T,使得直線MH必過該定點T?若存在,求出點T的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)在某一個周期內的圖象時,列表并填入了部分數(shù)據,如下表:

0

0

2

0

0

(1)請將上表數(shù)據補充完整,填寫在相應位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,直線,設圓的半徑為1,圓心在上.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

同步練習冊答案