【題目】已知直線m,l,平面α,β,且m⊥α,lβ,給出下列命題:
①若α∥β,則m⊥l;
②若α⊥β,則m∥l;
③若m⊥l,則α∥β
④若m∥l,則α⊥β
其中正確命題的個數(shù)是(
A.1
B.2
C.3
D.4

【答案】B
【解析】解:(1)中,若α∥β,且m⊥αm⊥β,又lβm⊥l,所以①正確.(2)中,若α⊥β,且m⊥αm∥β,又lβ,則m與l可能平行,可能異面,所以②不正確.(3)中,若m⊥l,且m⊥α,lβα與β可能平行,可能相交.所以③不正確.(4)中,若m∥l,且m⊥αl⊥α又lβα⊥β,∴④正確.故選B.
【考點精析】通過靈活運用空間中直線與平面之間的位置關系和平面與平面之間的位置關系,掌握直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點;兩個平面平行沒有交點;兩個平面相交有一條公共直線即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,g(x)=3x2+2ax+b(a,b,c是常數(shù)),若f(x)在(0,1)上單調(diào)遞減,則下列結(jié)論中:①f(0)f(1)≤0;②g(0)g(1)≥0;③a2﹣3b有最小值. 正確結(jié)論的個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知條件p:|x+1|>2,條件q:5x﹣6>x2 , 則¬p是¬q的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列{an}中,a5a14=5,則a8a9a10a11=(
A.10
B.25
C.50
D.75

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設p:方程x2+2mx+1=0有兩個不相等的正根;q:方程x2+2(m-2)x-3m+10=0無實根.則使p∨q為真,p∧q為假的實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式|x+3|>1的解集是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場擬對商品進行促銷,現(xiàn)有兩種方案供選擇.每種促銷方案都需分兩個月實施,且每種方案中第一個月與第二個月的銷售相互獨立.根據(jù)以往促銷的統(tǒng)計數(shù)據(jù),若實施方案1,頂計第一個月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4.第二個月銷量是笫一個月的1.4倍和1.6倍的概率都是0.5;若實施方案2,預計第一個月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個月的銷量是第一個月的1.2倍和1.6倍的概率分別是0.6和0.4.令ξi(i=1,2)表示實施方案i的第二個月的銷量是促銷前銷量的倍數(shù).
(Ⅰ)求ξ1 , ξ2的分布列:
(Ⅱ)不管實施哪種方案,ξi與第二個月的利潤之間的關系如表,試比較哪種方案第二個月的利潤更大.

銷量倍數(shù)

ξi≤1.7

1.7<ξi<2.3

ξi2.3

利潤(萬元)

15

20

25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知x<0,﹣1<y<0,用不等號將x,xy,xy2從大到小排列得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若(3x﹣1)5=a0+a1x+a2x2+…+a5x5 , 則a1+a2+a3+a4+a5=(
A.﹣1
B.31
C.32
D.33

查看答案和解析>>

同步練習冊答案