橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點P(1,
3
2
),離心率e=
1
2
,求橢圓C的方程.
考點:橢圓的標(biāo)準(zhǔn)方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點P(1,
3
2
),離心率e=
1
2
,可得
1
a2
+
9
4
b2
=1
,
c
a
=
1
2
,求出a,b,即可求出橢圓C的方程.
解答: 解:∵橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點P(1,
3
2
),離心率e=
1
2
,
1
a2
+
9
4
b2
=1
,
c
a
=
1
2
,
∴c=1,a=2,
∴b=
a2-c2
=
3
,
∴橢圓C的方程
x2
4
+
y2
3
=1
點評:本題重點考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì),考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點分別為F1,F(xiàn)2,上頂點為B.Q為拋物線y2=12x的焦點,且
F1B
QB
=0,2
F1F2
+
QF1
=0.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過定點P(0,2)的直線l與橢圓C交于M,N兩點(M在P,N之間),設(shè)直線l的斜率為k(k>0),在x軸上是否存在點A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+x2(a為常實數(shù)).
(1)若a=-2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[1,e]時,f(x)≤a+2恒成立,求實數(shù)a的取值范圍;
(3)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
1
x

(1)判斷函數(shù)f(x)的奇偶性,并加以證明;
(2)用定義證明函數(shù)f(x)在區(qū)間[1,+∞)上為增函數(shù);
(3)若函數(shù)f(x)在區(qū)間[2,a]上的最大值與最小值之和不小于
11a-2
2a
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a,b,c分別為∠A,∠B,∠C的對邊.
(1)若∠A=45°,a=4
2
,c=4,求∠C;
(2)若a2+c2-b2=ac,求∠B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1+a2=16且Sn=2Sn-1+n+4(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式an;
(Ⅱ)令bn=nan,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c成等比數(shù)列,公比為3,且a,b+2,c成等差數(shù)列,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
7x-3
x
在[
1
2
,3]上的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O是坐標(biāo)原點,兩定點A,B滿足|
OA
|=|
OB
|=
OA
OB
=2,則點集{P|
OP
=x
OA
+y
OB
,|x|+|y|≤1,x,y∈R}所表示的區(qū)域的面積是
 

查看答案和解析>>

同步練習(xí)冊答案