(2013•北京)“φ=π”是“曲線y=sin(2x+φ)過坐標(biāo)原點(diǎn)”的( �。�
分析:按照充要條件的定義從兩個(gè)方面去求①曲線y=sin(2x+φ)過坐標(biāo)原點(diǎn),求出φ的值,②φ=π時(shí),曲線y=sin(2x+φ)過坐標(biāo)原點(diǎn).
解答:解:φ=π時(shí),曲線y=sin(2x+φ)=sin2x,過坐標(biāo)原點(diǎn).
但是,曲線y=sin(2x+φ)過坐標(biāo)原點(diǎn),即O(0,0)在圖象上,
將(0,0)代入解析式整理即得sinφ=0,φ=kπ,k∈Z,不一定有φ=π.
故“φ=π”是“曲線y=sin(2x+φ)過坐標(biāo)原點(diǎn)”的充分而不必要條件.
故選A.
點(diǎn)評:本題考查充要條件的判定,用到的知識是三角函數(shù)的圖象特征.是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)將序號分別為1,2,3,4,5的5張參觀券全部分給4人,每人至少1張,如果分給同一人的2張參觀券連號,那么不同的分法種數(shù)是
96
96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)直線l過拋物線C:x2=4y的焦點(diǎn)且與y軸垂直,則l與C所圍成的圖形的面積等于( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)已知{an}是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng)an+1,an+2…的最小值記為Bn,dn=An-Bn
(Ⅰ)若{an}為2,1,4,3,2,1,4,3…,是一個(gè)周期為4的數(shù)列(即對任意n∈N*,an+4=an),寫出d1,d2,d3,d4的值;
(Ⅱ)設(shè)d是非負(fù)整數(shù),證明:dn=-d(n=1,2,3…)的充分必要條件為{an}是公差為d的等差數(shù)列;
(Ⅲ)證明:若a1=2,dn=1(n=1,2,3,…),則{an}的項(xiàng)只能是1或者2,且有無窮多項(xiàng)為1.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�