如圖所示,點(diǎn)P在圓x2+(y-2)2上移動(dòng),點(diǎn)Q在橢圓x2+4y2=4上移動(dòng),求|PQ|的最大值及相應(yīng)的點(diǎn)Q的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點(diǎn)P在圓O:x2+y2=4上,PD⊥x軸,點(diǎn)M在射線DP上,且滿足
DM
DP
(λ≠0).
(Ⅰ)當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程,并根據(jù)λ取值說明軌跡C的形狀.
(Ⅱ)設(shè)軌跡C與x軸正半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,直線2x-3y=0與軌跡C交于點(diǎn)E、F,點(diǎn)G在直線AB上,滿足
EG
=6
GF
,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點(diǎn)N在圓x2+y2=4上運(yùn)動(dòng),DN⊥x軸,點(diǎn)M在DN的延長線上,且
DM
DN
(λ>0).
(1)求點(diǎn)M的軌跡方程,并求當(dāng)λ為何值時(shí)M的軌跡表示焦點(diǎn)在x軸上的橢圓;
(2)當(dāng)λ=
1
2
時(shí),(1)所得曲線記為C,已知直線l:
x
2
+y=1
,P是l上的動(dòng)點(diǎn),射線OP(O為坐標(biāo)原點(diǎn))交曲線C于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ|•|OP|=|OR|2,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖南省衡陽市衡陽縣六中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,點(diǎn)P在圓O:x2+y2=4上,PD⊥x軸,點(diǎn)M在射線DP上,且滿足(λ≠0).
(Ⅰ)當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程,并根據(jù)λ取值說明軌跡C的形狀.
(Ⅱ)設(shè)軌跡C與x軸正半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,直線2x-3y=0與軌跡C交于點(diǎn)E、F,點(diǎn)G在直線AB上,滿足,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷C(四)(解析版) 題型:解答題

如圖所示,點(diǎn)P在圓O:x2+y2=4上,PD⊥x軸,點(diǎn)M在射線DP上,且滿足(λ≠0).
(Ⅰ)當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程,并根據(jù)λ取值說明軌跡C的形狀.
(Ⅱ)設(shè)軌跡C與x軸正半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,直線2x-3y=0與軌跡C交于點(diǎn)E、F,點(diǎn)G在直線AB上,滿足,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年海南省高考數(shù)學(xué)壓軸卷(理科)(解析版) 題型:解答題

如圖所示,點(diǎn)P在圓O:x2+y2=4上,PD⊥x軸,點(diǎn)M在射線DP上,且滿足(λ≠0).
(Ⅰ)當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程,并根據(jù)λ取值說明軌跡C的形狀.
(Ⅱ)設(shè)軌跡C與x軸正半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,直線2x-3y=0與軌跡C交于點(diǎn)E、F,點(diǎn)G在直線AB上,滿足,求實(shí)數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案