某工廠為了制造一個實心工件,先畫出了這個工件的三視圖(如圖),其中正視圖與側(cè)視圖為兩個全等的等腰三角形,俯視圖為一個圓,三視圖尺寸如圖所示(單位cm);

(1)求出這個工件的體積;
(2)工件做好后,要給表面噴漆,已知噴漆費用是每平方厘米1元,現(xiàn)要制作10個這樣的工件,請計算噴漆總費用(精確到整數(shù)部分).

(1)  ;(2)314元

解析試題分析:(1)根據(jù)三視圖可知該工件是一個圓錐的形狀,其中圓的半徑為2,母線長為3,所以圓錐的高 .又根據(jù)圓錐的體積公式 .可得 .故填 .
(2)因為圓錐的表面積公式為.又因為.所以.所以10個共要.所以共需要元.所以填314元.
試題解析:(1)由三視圖可知,幾何體為圓錐,底面直徑為4,
母線長為3,               2分
設圓錐高為,
        4分
6分
(2)圓錐的側(cè)面積,   8分
則表面積=側(cè)面積+底面積=(平方厘米)
噴漆總費用=元     11分
考點:1 三視圖 2 圓錐的體積 3 圓錐的表面積

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四面體ABCD中,△ABC與△DBC都是邊長為4的正三角形.

(1)求證:BCAD;
(2)試問該四面體的體積是否存在最大值?若存在,求出這個最大值及此時棱長AD的大;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在等腰梯形ABCD中,ABCD,ABBCAD=2,CD=4,E為邊DC的中點,如圖1.將△ADE沿AE折起到△AEP位置,連PBPC,點Q是棱AE的中點,點M在棱PC上,如圖2.

(1)若PA∥平面MQB,求PMMC;
(2)若平面AEP⊥平面ABCE,點MPC的中點,求三棱錐A­MQB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥底面ABCDABAD,點E在線段AD上,且CEAB.

(1)求證:CE⊥平面PAD;
(2)若PAAB=1,AD=3,CD,∠CDA=45°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面是菱形,,,,,的中點,上的點滿足

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,長方體中,為線段的中點,.

(Ⅰ)證明:⊥平面;
(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在長方體中,截下一個棱錐,求棱錐的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知半徑為的球內(nèi)有一個內(nèi)接正方體(即正方體的頂點都在球面上).
(1)求此球的體積;
(2)求此球的內(nèi)接正方體的體積;
(3)求此球的表面積與其內(nèi)接正方體的全面積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在底面為平行四邊形的四棱柱中,底面,,,

(Ⅰ)求證:平面平面;
(Ⅱ)若,求四棱錐的體積.

查看答案和解析>>

同步練習冊答案