(本小題滿分12分)
已知二次函數(shù), 滿足的最小值是.(Ⅰ)求的解析式;(Ⅱ)設(shè)函數(shù),若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍。

(Ⅰ);(Ⅱ)。

解析試題分析:(Ⅰ)設(shè),又,故   (5分)
(Ⅱ)    (8分)
                (12分)
考點:二次函數(shù)的解析式及性質(zhì);利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點評:本題主要考查的知識點是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)解析式的求法,是二次函數(shù)圖象和性質(zhì)及導(dǎo)數(shù)的綜合應(yīng)用,難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)時下,網(wǎng)校教學(xué)越來越受到廣大學(xué)生的喜愛,它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢,假設(shè)某網(wǎng)校的套題每日的銷售量(單位:千套)與銷售價格(單位:元/套)滿足的關(guān)系式,其中為常數(shù).已知銷售價格為4元/套時,每日可售出套題21千套.
(1)求的值;
(2)假設(shè)網(wǎng)校的員工工資,辦公等所有開銷折合為每套題2元(只考慮銷售出的套數(shù)),試確定銷售價格的值,使網(wǎng)校每日銷售套題所獲得的利潤最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題14分)如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,(1)求拋物線方程.(2)若將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的最小值為1,且
(1)求的解析式;  
(2)若在區(qū)間上不單調(diào),求實數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-5:不等式選講
已知函數(shù)
(1)當(dāng)時,求函數(shù)的定義域;
(2)若關(guān)于的不等式的解集是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)求值:; (2)已知的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)設(shè),
(1)當(dāng)時,求曲線處的切線的斜率;
(2)如果存在,使得成立,求滿足上述條件的最大整數(shù)
(3)如果對于任意,都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)已知函數(shù)的圖象經(jīng)過點,其中。
(1)求的值;
(2)求函數(shù)的值域。

查看答案和解析>>

同步練習(xí)冊答案