已知?jiǎng)又本?:y=kx+5和圓C(x-1)2+y2=1,試問(wèn)k為何值時(shí),直線?與⊙C相離?相切?相交?
分析:根據(jù)已知中圓的標(biāo)準(zhǔn)方程,我們可以分析出圓的圓心坐標(biāo)和半徑,結(jié)合直線的方程和點(diǎn)到直線距離公式,可又求出圓心到直線的距離d,進(jìn)而根據(jù)直線與圓的位置關(guān)系的判定方法,可得直線?與⊙C相離,相切,相交時(shí),k的取值范圍.
解答:解:∵圓C(x-1)2+y2=1的圓心坐標(biāo)為(1,0),半徑為1
直線?:y=kx+5的方程可化為kx-y+5=0
則圓心C到直線?的距離d=
|k+5|
k2+1

當(dāng)d=
|k+5|
k2+1
>1,即k>-
12
5
時(shí),直線?與⊙C相離;
當(dāng)d=
|k+5|
k2+1
=1,即k=-
12
5
時(shí),直線?與⊙C相切;
當(dāng)d=
|k+5|
k2+1
<1,即k<-
12
5
時(shí),直線?與⊙C相交;
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線與圓的位置關(guān)系,熟練掌握直線與圓位置關(guān)系的判定方法及等價(jià)條件是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
5
2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A、B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為-
1
2
,求斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
5
2
3

(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A、B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-
1
2
,求斜率k的值;
②已知點(diǎn)M(-
7
3
,0)
,求證:
MA
MB
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南匯區(qū)二模)已知?jiǎng)又本y=kx交圓(x-2)2+y2=4于坐標(biāo)原點(diǎn)O和點(diǎn)A,交直線x=4于點(diǎn)B,若動(dòng)點(diǎn)M滿足
OM
=
AB
,動(dòng)點(diǎn)M的軌跡C的方程為F(x,y)=0.
(1)試用k表示點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)求動(dòng)點(diǎn)M的軌跡方程F(x,y)=0;
(3)以下給出曲線C的五個(gè)方面的性質(zhì),請(qǐng)你選擇其中的三個(gè)方面進(jìn)行研究,并說(shuō)明理由(若你研究的方面多于三個(gè),我們將只對(duì)試卷解答中的前三項(xiàng)予以評(píng)分).
①對(duì)稱性;(2分)
②頂點(diǎn)坐標(biāo)(定義:曲線與其對(duì)稱軸的交點(diǎn)稱為該曲線的頂點(diǎn));(2分)
③圖形范圍;(2分)
④漸近線;(3分)
⑤對(duì)方程F(x,y)=0,當(dāng)y≥0時(shí),函數(shù)y=f(x)的單調(diào)性.(3分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=8x,O為坐標(biāo)原點(diǎn),動(dòng)直線l:y=k(x+2)與拋物線C交于不同兩點(diǎn)A,B
(1)求證:
OA
OB
為常數(shù);
(2)求滿足
OM
=
OA
+
OB
的點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案