已知圓,直線,過(guò)上一點(diǎn)A作,使得,邊AB過(guò)圓心M,且B,C在圓M上,求點(diǎn)A縱坐標(biāo)的取值范圍。

解析試題分析:因?yàn)辄c(diǎn)A在直線上,假設(shè)點(diǎn)的坐標(biāo).又因?yàn)橹本AC與圓的位置關(guān)系為至少一個(gè)交點(diǎn).即可表示為圓心到直線AC的距離小于或等于半徑.點(diǎn)到直線的距離由可得.從而得到一個(gè)關(guān)于的等式即可求得結(jié)論.
試題解析:由題意圓心,半徑,設(shè)
因?yàn)橹本和圓相交或相切,所以的距離,
,因此,                 6分

解得,故點(diǎn)的縱坐標(biāo)的取值范圍是.        12分
考點(diǎn):1.直線與圓的位置關(guān)系.2.解三角形的知識(shí).3.二次不等式的解法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個(gè)圓.
(1)求實(shí)數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標(biāo)原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線xy+2=0相切.

(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PMQN相交于點(diǎn)T.求證:點(diǎn)T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線C,求此曲線的方程;
(2)若點(diǎn)Q在直線l1xy+3=0上,直線l2經(jīng)過(guò)點(diǎn)Q且與曲線C只有一個(gè)公共點(diǎn)M,求|QM|的最小值.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓經(jīng)過(guò)坐標(biāo)原點(diǎn)和點(diǎn),且圓心在軸上.
(1)求圓的方程;
(2)設(shè)直線經(jīng)過(guò)點(diǎn),且與圓相交所得弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓經(jīng)過(guò)點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)若點(diǎn)為圓上任意一點(diǎn),求點(diǎn)到直線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓與圓外切于點(diǎn),直線是兩圓的外公切線,分別與兩圓相切于兩點(diǎn),是圓的直徑,過(guò)作圓的切線,切點(diǎn)為.

(Ⅰ)求證:三點(diǎn)共線;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)動(dòng)點(diǎn)P滿足.
(Ⅰ)若點(diǎn)的軌跡為曲線,求此曲線的方程;
(Ⅱ)若點(diǎn)在直線上,直線經(jīng)過(guò)點(diǎn)且與曲線有且只有一個(gè)公共點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.
(1)判斷兩圓的位置關(guān)系;
(2)求直線m的方程,使直線m被圓C1截得的弦長(zhǎng)為4,與圓C截得的弦長(zhǎng)是6.

查看答案和解析>>

同步練習(xí)冊(cè)答案