當(dāng)x∈[0,1]時(shí),求函數(shù)f(x)=x2+(2-6a)x+3a2的最小值.
分析:先求得函數(shù)f(x)=x2+(2-6a)x+3a2的對(duì)稱軸,為x=3a-1,由于此問(wèn)題是一個(gè)區(qū)間定軸動(dòng)的問(wèn)題,故分類討論函數(shù)的最小值
解答:解:該函數(shù)的對(duì)稱軸是x=3a-1,
①當(dāng)3a-1<0,即
a<時(shí),f
min(x)=f(0)=3a
2;
②當(dāng)3a-1>1,即
a>時(shí),f
min(x)=f(1)=3a
2-6a+3;
③當(dāng)0≤3a-1≤1,即
≤a≤時(shí),f
min(x)=f(3a-1)=-6a
2+6a-1.
綜上所述,函數(shù)的最小值是:當(dāng)
a<時(shí),f
min(x)=f(0)=3a
2,當(dāng)
a>時(shí),f
min(x)=f(1)=3a
2-6a+3;當(dāng)
≤a≤時(shí),f
min(x)=f(3a-1)=-6a
2+6a-1.
點(diǎn)評(píng):本題考查函數(shù)的最值及其幾何意義,解題的關(guān)鍵是根據(jù)二次函數(shù)的性質(zhì)對(duì)函數(shù)在區(qū)間[0,1]的最值進(jìn)行研究得出函數(shù)的最小值,二次函數(shù)在閉區(qū)間上的最值問(wèn)題分為兩類,一類是區(qū)間定軸動(dòng)的問(wèn)題,如本題,另一類是區(qū)間動(dòng)軸定的問(wèn)題,兩類問(wèn)題求共性都是要分類討論求最值,此問(wèn)題是高考解題的一個(gè)熱點(diǎn),很多求最值的問(wèn)題最后都?xì)w結(jié)為二次函數(shù)的最值,對(duì)此類問(wèn)題求最值的規(guī)律要認(rèn)真總結(jié),熟記于心.