【題目】如圖,四棱錐的底面是菱形,,平面,的中點.

(1)求證:平面平面;

(2)棱上是否存在一點使得平面?若存在,確定的位置并加以證明;若不存在,請說明理由.

【答案】(1)見解析(2) 點的中點

【解析】試題分析:(1)證面面垂直,可先由線面垂直入手即,進而得到面面垂直;(2)通過構(gòu)造平行四邊形,得到線面平行。

解析:

(1)連接,因為底面是菱形,,所以為正三角形.

因為的中點, 所以,

因為,,∴,

因為,,

所以.

, 所以面⊥面.

(2)當點的中點時,∥面.

事實上,取的中點,的中點,連結(jié),,

為三角形的中位線,

,

又在菱形中,的中點,

,

所以四邊形為平行四邊形.

所以

,

∥面,結(jié)論得證.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,3b=20acos A,則sin A:sin B:sin C為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個體服裝店經(jīng)營某種服裝,在某周內(nèi)獲得的純利潤y(單位:元)與該周每天銷售這種服裝的件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表:

x

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91

(1)求純利潤y與每天銷售件數(shù)x之間的回歸方程;

(2)若該周內(nèi)某天銷售服裝20件,估計可獲得純利潤多少元?

已知:=280,xiyi=3 487,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三點A(1,2),B(﹣3,0),C(3,﹣2).
(1)求證△ABC為等腰直角三角形;
(2)若直線3x﹣y=0上存在一點P,使得△PAC面積與△PAB面積相等,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計表明,家庭的月理財投入(單位:千元)與月收入(單位:千元)之間具有線性相關(guān)關(guān)系.某銀行隨機抽取5個家庭,獲得第1,2,3,4,5)個家庭的月理財投入與月收入的數(shù)據(jù)資料,經(jīng)計算得,

(1)求關(guān)于的回歸方程;

(2)判斷之間是正相關(guān)還是負相關(guān);

(3)若某家庭月理財投入為5千元,預測該家庭的月收入.

附:回歸方程的斜率與截距的最小二乘估計公式分別為:

,其中,為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:x2﹣2x﹣8≤0,q:x2+mx﹣6m2≤0,m>0.
(1)若q是p的必要不充分條件,求m的取值范圍;
(2)若p是q的充分不必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且滿足x>0時,f(x)+xf'(x)>0,f(2)=0,則不等式f(x)>0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù)y=sin(4x﹣ )的圖象,只需將函數(shù)y=sin4x的圖象(
A.向左平移 單位
B.向右平移 單位
C.向左平移 單位
D.向右平移 單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:﹣x2+4x+12≥0,q:x2﹣2x+1﹣m2≤0(m>0).
(Ⅰ)若p是q充分不必要條件,求實數(shù)m的取值范圍;
(Ⅱ)若“¬p”是“¬q”的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案