已知圓的極坐標(biāo)方程為ρ=4cosθ,圓心為C,點(diǎn)P的極坐標(biāo)為(4,
π
3
),則|CP|=
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把極坐標(biāo)方程化為直角坐標(biāo)方程,求出點(diǎn)P的直角坐標(biāo),可得|CP|的值.
解答: 解:由ρ=4cosθ可得圓的直角坐標(biāo)方程為(x-2)2+y2=4,故圓心C(2,0),點(diǎn)P的直角坐標(biāo)為(2,2
3
),
所以|CP|=2
3
,
故答案為:2
3
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
2x-y+2≥0
x-y≤0
x+y-2≥0
,則z=x+2y的最小值為(  )
A、-6B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,底面ABCD為菱形的直四棱柱ABCD-A1B1C1D1,所有棱長(zhǎng)都為2,∠BAD=60°,E為BB1的延長(zhǎng)線上一點(diǎn),D1E⊥面D1AC.
(1)求線段B1E的長(zhǎng)度及三棱錐E-D1AC的體積V E-D1AC;
(2)設(shè)AC和BD交于點(diǎn)O,在線段D1E上是否存在一點(diǎn)P,使EO∥面A1C1P?若存在,求D1P:PE的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,AD是直角△ABC斜邊上的高,沿AD把△ABC的兩部分折成直二面角(如圖2),DF⊥AC于F.
(Ⅰ)證明:BF⊥AC;
(Ⅱ)設(shè)∠DCF=θ,AB與平面BDF所成的角為α,二面角B-FA-D的大小為β,試用tanθ,cosβ表示tanα;
(Ⅲ)設(shè)AB=AC,E為AB的中點(diǎn),在線段DC上是否存在一點(diǎn)P,使得DE∥平面PBF?若存在,求
DP
PC
的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于直線m,n和平面α,β,有如下四個(gè)命題:
(1)若m∥α,n∥β,α∥β,則m∥n;
(2)若m∥n,n?α,n⊥β,則α⊥β;
(3)若α∩β=m,m∥n,則n∥α且n∥β;
(4)若m⊥n,α∩β=m,則n⊥α或n⊥β.
其中真命題的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+lnx,a∈R.
(1)若函數(shù)f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(2)今g(x)=x2+2ax-f(x),是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e=2.71828…)時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
4
-y2=1的左右焦點(diǎn)為F1、F2,點(diǎn)P為左支上一點(diǎn),且滿足∠F1PF2=60°,則△F1PF2的面積為( 。
A、
3
B、
3
3
C、
3
2
D、D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且其圖象關(guān)于直線x=1對(duì)稱,當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)求證:f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4]時(shí),求f(x)的解析式;
(3)計(jì)算:f(0)+f(1)+f(2)+…+f(2013).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y-7≤0
x-3y+1≤0
3x-y-5≥0
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案