直線=1與橢圓=1相交于兩點(diǎn)A、B,該橢圓上的點(diǎn)P使得△PAB的面積為3,這樣的P點(diǎn)共有(    )

A.1個                     B.2個            C.3個              D.4個

B

解析:|AB|=5,∴點(diǎn)P到直線AB的距離為,設(shè)P(4cosθ,3sinθ),

.

|sin(θ+)-1|=,sin(θ+)=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)的橢圓C:
x2
a2
+
y2
b2
=1的焦點(diǎn)為F1(0,3),M(x,4)(x>0)橢圓C上一點(diǎn),△MOF1的面積為
3
2

(1)求橢圓C的方程.
(2)是否存在平行于OM的直線l,使得直線l與橢圓C相較于A,B兩點(diǎn),且以線段AB為直徑的圓恰好經(jīng)過原點(diǎn)?若存在,求出直線l的方程,請說明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都模擬)已知m>1,直線l:x-my-
m2
2
=0,橢圓C:
x2
m2
+y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn).
(I)當(dāng)直線l過右焦點(diǎn)F2時,求直線l的方程;
(II)當(dāng)直線l與橢圓C相離、相交時,求m的取值范圍;
(III)設(shè)直線l與橢圓C交于A、B兩點(diǎn),△AF1F2,△BF1F2的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市高三摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知m>1,直線l:x-my-=0,橢圓C:+y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn).
(I)當(dāng)直線l過右焦點(diǎn)F2時,求直線l的方程;
(II)當(dāng)直線l與橢圓C相離、相交時,求m的取值范圍;
(III)設(shè)直線l與橢圓C交于A、B兩點(diǎn),△AF1F2,△BF1F2的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點(diǎn)的橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1的焦點(diǎn)為F1(0,3),M(x,4)(x>0)橢圓C上一點(diǎn),△MOF1的面積為數(shù)學(xué)公式
(1)求橢圓C的方程.
(2)是否存在平行于OM的直線l,使得直線l與橢圓C相較于A,B兩點(diǎn),且以線段AB為直徑的圓恰好經(jīng)過原點(diǎn)?若存在,求出直線l的方程,請說明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市建人高復(fù)學(xué)校高三(下)第五次質(zhì)量檢測數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知中心在原點(diǎn)的橢圓C:+=1的焦點(diǎn)為F1(0,3),M(x,4)(x>0)橢圓C上一點(diǎn),△MOF1的面積為
(1)求橢圓C的方程.
(2)是否存在平行于OM的直線l,使得直線l與橢圓C相較于A,B兩點(diǎn),且以線段AB為直徑的圓恰好經(jīng)過原點(diǎn)?若存在,求出直線l的方程,請說明理由..

查看答案和解析>>

同步練習(xí)冊答案