二階矩陣M對應(yīng)的變換將點(diǎn)(1,一1)與(-2,1)分別變換成點(diǎn)(-1,一1)與(0,一2).
①求矩陣M;
②設(shè)直線l在變換M的作用下得到了直線m:x-y=4,求l的方程.

;②x+y+2=0.

解析試題分析:本題考查矩陣的運(yùn)算與直線在矩陣下的變換等數(shù)學(xué)知識,考查學(xué)生對矩陣運(yùn)算公式的應(yīng)用的熟練程度,考查學(xué)生的計(jì)算能力.第一問,先設(shè)出矩陣M,通過已知列出表達(dá)式,根據(jù)矩陣的運(yùn)算,將其轉(zhuǎn)化為方程組,解出a,b,c,d,即可得到矩陣M;第二問,設(shè)所求直線上有任意一點(diǎn),經(jīng)過矩陣的變換得到點(diǎn),在上,列出矩陣關(guān)系式即可.
試題解析:①設(shè),則有,
所以,解得
所以.(3分)
②任取直線l上一點(diǎn)P(x,y)經(jīng)矩陣M變換后為點(diǎn)P′(x′,y′).
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b8/d/tiy5f1.png" style="vertical-align:middle;" />,
所以,又m:x′-y′=4,
所以直線l的方程為(x+2y)-(3x+4y)=4,即x+y+2=0.(7分)
考點(diǎn):矩陣的運(yùn)算

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知變換,點(diǎn)在變換下變換為點(diǎn),則    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知矩陣A=,向量α=.
(1)求A的特征值λ12和對應(yīng)的特征向量α12.
(2)計(jì)算A5α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求矩陣M=的特征值和特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知矩陣A的逆矩陣A-1,求矩陣A的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個的矩陣有兩個特征值:,它們對應(yīng)的一個特征向量分別為:
求矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知矩陣M所對應(yīng)的線性變換把點(diǎn)A(x,y)變成點(diǎn)A′(13,5),試求M的逆矩陣及點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求曲線y=在矩陣作用下變換所得的圖形對應(yīng)的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知2×2矩陣M滿足:M=,M=,求M2.

查看答案和解析>>

同步練習(xí)冊答案