在數(shù)列{an}中,a1=1,an+1=an+
1
n(n+1)
(n∈N*),則an=
 
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)數(shù)列的遞推關(guān)系,利用累加法和裂項(xiàng)法即可得到結(jié)論.
解答: 解:∵a1=1,an+1=an+
1
n(n+1)
(n∈N*),
∴an+1-an=
1
n(n+1)
=
1
n
-
1
n+1
,(n∈N*),
則a2-a1=1-
1
2
,
a3-a2=
1
2
-
1
3


an-an-1=
1
n-1
-
1
n

等式兩邊同時(shí)相加得
an-a1=1-
1
n
,
故an=2-
1
n
,
故答案為:2-
1
n
點(diǎn)評:本題主要考查數(shù)列項(xiàng)的求解,根據(jù)數(shù)列的遞推關(guān)系,以及利用累加法和裂項(xiàng)法是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為1的正方體AC1中,E、F分別為A1D1和A1B1的中點(diǎn).
(1)求異面直線AF和BE所成的角的余弦值;
(2)求平面ACC1與平面BFC1所成的銳二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請判斷下列函數(shù)y=
9-x2
|x+5|-5
的奇偶性,并寫出證明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,B(0,-3),C(0,3),△ABC的邊滿足AB+CA=2BC.則點(diǎn)A的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
9
+
y2
5
=1左焦點(diǎn)F且不垂直于x軸的直線交橢圓于A、B兩點(diǎn),AB的垂直平分線交x軸于點(diǎn)N,則
|NF|
|AB|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①存在α∈(0,
π
2
),使sinα+cosα=
1
3

②存在區(qū)間(a,b),使y=cosx為減函數(shù)而sinx<0;
③y=tanx在其定義域內(nèi)為增函數(shù);
④若|
a
+
b
|=|
a
|-|
b
|,則
a
b
;
⑤已知P為△ABC的外心,若
PA
+
PB
+
PC
=
0
,則△ABC為正三角形;
a
,
b
,
c
互不共線,則(
a
b
)•
c
-(
c
a
)•
b
=0.
以上命題錯(cuò)誤的為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:sin(π-α)sin(π+α)-sin(
π
2
-α)sin(
π
2
+α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|
a
|=1,|
b
|=
2
,(
a
-
b
)•
a
=0,則(
a
+
b
)•
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線:l:y=kx+m(m≠0),雙曲線C:
x2
a2
-
y2
b2
=1(a>b>0),則“k=-
b
a
”是“直線l與雙曲線C恰有一個(gè)公共點(diǎn)“的
 

查看答案和解析>>

同步練習(xí)冊答案