已知直線l經(jīng)過(guò)兩條直線l1:x+y-4=0和l2:x-y+2=0的交點(diǎn),直線l3:2x-y-1=0;
(1)若l∥l3,求l的直線方程;
(2)若l⊥l3,求l的直線方程.
考點(diǎn):直線的一般式方程與直線的垂直關(guān)系,直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:(1)由
x+y-4=0
x-y+2=0
,得l1與l2的交點(diǎn)為(1,3).設(shè)與直線2x-y-1=0平行的直線為2x-y+c=0,由此能求出l的直線方程.
(2)設(shè)與直線2x-y-1=0垂直的直線為x+2y+c=0,由此能求出l的直線方程.
解答: 解:(1)由
x+y-4=0
x-y+2=0
,得
x=1
y=3
,
∴l(xiāng)1與l2的交點(diǎn)為(1,3).
設(shè)與直線2x-y-1=0平行的直線為2x-y+c=0,
則2-3+c=0,∴c=1.
∴所求直線方程為2x-y+1=0.
(2)設(shè)與直線2x-y-1=0垂直的直線為x+2y+c=0,
則1+2×3+c=0,解得c=-7.
∴所求直線方程為x+2y-7=0.
點(diǎn)評(píng):本題考查直線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線的位置關(guān)系的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線
x=1+t
y=a-t
(t為參數(shù))被圓
x=2+2cosα
y=2+2sinα
(α為參數(shù))所截的弦長(zhǎng)為2
2
,則a的值為( 。
A、1或5B、-1或5
C、1或-5D、-1或-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市調(diào)研考試后,某校對(duì)甲乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為
3
11

優(yōu)秀非優(yōu)秀合計(jì)
甲班10
乙班30
合計(jì)110
(1)請(qǐng)完成上面的列聯(lián)表
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
參考公式與臨界值表:K2=
n(ad-bc)2
(a+b)(c+d)(c+a)(b+d)

P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在自然條件下,某草原上野兔第n年年初的數(shù)量記為xn,該年的增長(zhǎng)量yn和xn與1-
xn
m
的乘積成正比,比例系數(shù)為λ(0<λ<1),其中m是與n無(wú)關(guān)的常數(shù),且x1<m,
(1)證明:yn
λm
4
;
(2)用xn表示xn+1,并證明草原上的野兔總數(shù)量恒小于m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-7,a1,a2,-1四個(gè)實(shí)數(shù)成等差數(shù)列,-4,b1,b2,b3,-1五個(gè)實(shí)數(shù)成等比數(shù)列,則
a2-a1
b2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-2asin(2x+
π
6
)+2a+b,
(1)求f(x)的周期
(2)若a>0,求f(x)的最大值,并求出取得最大值時(shí)的x的集合.
(3)若x∈[
π
4
,
4
],是否存在常數(shù)a、b∈Q,使得f(x)的值域?yàn)閧y|-3≤y≤
3
-1}?若存在,求出a、b的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

工商部門對(duì)甲、乙兩家食品加工企業(yè)的產(chǎn)品進(jìn)行深入檢查后,決定對(duì)甲企業(yè)的5種產(chǎn)品和乙企業(yè)的3種產(chǎn)品做進(jìn)一步的檢驗(yàn).檢驗(yàn)員從以上8種產(chǎn)品中每次抽取一種逐一不重復(fù)地進(jìn)行化驗(yàn)檢驗(yàn).
(Ⅰ)求前3次檢驗(yàn)的產(chǎn)品中至少1種是乙企業(yè)的產(chǎn)品的概率;
(Ⅱ)記檢驗(yàn)到第一種甲企業(yè)的產(chǎn)品時(shí)所檢驗(yàn)的產(chǎn)品種數(shù)共為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一枚硬幣連擲3次,觀察向上面的情況.
(1)寫出所有的基本事件,并計(jì)算總數(shù);
(2)求僅有2次正面向上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(θ+
π
4
)=
3
5
,θ為鈍角,則sinθ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案