定義在R上的函數(shù)f(x),對(duì)任意x∈R都有f(x+2)=f(x),當(dāng)x∈(-2,0)時(shí),f(x)=4x,則f(2 013)=________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第5課時(shí)練習(xí)卷(解析版) 題型:解答題
作函數(shù)的y= [3(x+1)]圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
證明函數(shù)f(x)=在區(qū)間[1,+∞)上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時(shí)練習(xí)卷(解析版) 題型:解答題
若函數(shù)y=f(x)的定義域是[0,2],求函數(shù)g(x)=的定義域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
已知f(x)為二次函數(shù),不等式f(x)+2<0的解集是,且對(duì)任意α、β∈R恒有f(sinα)≤0,f(2+cosβ)≥0,求函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
下列說法正確的是______________.(填序號(hào))
① 函數(shù)是其定義域到值域的映射;
② 設(shè)A=B=R,對(duì)應(yīng)法則f:x→y=,x∈A,y∈B,滿足條件的對(duì)應(yīng)法則f構(gòu)成從集合A到集合B的函數(shù);
③ 函數(shù)y=f(x)的圖象與直線x=1的交點(diǎn)有且只有1個(gè);
④ 映射f:{1,2,3}→{1,2,3,4}滿足f(x)=x,則這樣的映射f共有1個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)= (a<0)的定義域?yàn)?/span>D,若所有點(diǎn)(s,f(t))(s、t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:填空題
已知集合A={x|33-x<6},B={x|lg(x-1)<1},則A∩B=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時(shí)練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=ex-ax在x=1處取到極值,則a=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com