【題目】如圖,已知是直角梯形,,垂直于平面,,

1)求直線與平面所成角的正弦值;

2)求平面與平面所成銳二面角的正切值.

【答案】(1)見(jiàn)解析;(2)

【解析】

解法1:(1)根據(jù)已知利用線面垂直的判定定理可以證明出平面,根據(jù)可以得到到平面的距離等于到平面的距離,最后利用線面角的定義求出直線與平面所成角的正弦值;

2)延長(zhǎng),設(shè)點(diǎn)是它們的交點(diǎn),連接,則所求二角角延展為二面角.利用線面垂直的判定定理、二面角的定義可以證明出是二面角的平面角,最后利用正切函數(shù)的定義求出平面與平面所成銳二面角的正切值.

解法2:如圖,以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,建立空間直角坐標(biāo)系

1)利用空間向量夾角公式求出直線與平面所成角的正弦值;

2)利用空間向量夾角公式求出平面與平面所成銳二面角的余弦值,再根據(jù)同角的三角函數(shù)的關(guān)系式求出平面與平面所成銳二面角的正切值.

解法1:(1)因?yàn)?/span>,,所以平面,于是到平面的距離為

因?yàn)?/span>,所以到平面的距離等于到平面的距離等于

由題設(shè),所以直線與平面所成角的正弦值為

2)延長(zhǎng),,設(shè)點(diǎn)是它們的交點(diǎn),連接,則所求二角角延展為二面角

因?yàn)?/span>,,所以平面.在平面內(nèi)過(guò)于點(diǎn),連接,所以有,因此有平面,所以,于是是二面角的平面角.

由題設(shè),,所以AF,所以tanAFD .

故平面與平面所成二面角的正切值為

解法2:(1)如圖,以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,建立空間直角坐標(biāo)系

由已知得,,,

平面的一個(gè)法向量為.因?yàn)?/span>,

因此直線與平面所成角的正弦值為

2)設(shè)平面的法向量為.由,,

可取.取平面的法向量為

所以.所以,

由圖知平面與平面所成二面角銳二面角,所以正切值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),)為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為

1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面真角坐標(biāo)系xOy中,曲線的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立根坐標(biāo)系.曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若曲線與曲線交于M,N兩點(diǎn),直線OMON的斜率分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn),若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)橢點(diǎn)”.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若直線與橢圓C相交于A,B兩點(diǎn),且A,B兩點(diǎn)的橢點(diǎn)分別為P,Q,以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別為,,圓上有一動(dòng)點(diǎn),軸上方,點(diǎn),直線交橢圓于點(diǎn),連接,.

1)若,求的面積

2)設(shè)直線,的斜率存在且分別為,,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),是該橢圓的左、右焦點(diǎn),是上頂點(diǎn),且是等腰直角三角形.

1)求的方程;

2)已知是坐標(biāo)原點(diǎn),直線與橢圓相交于兩點(diǎn),點(diǎn)上且滿足四邊形是一個(gè)平行四邊形,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是橢圓上的點(diǎn),是焦點(diǎn),離心率.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)是橢圓上的兩點(diǎn),且,問(wèn)線段的垂直平分線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出此定點(diǎn)的坐標(biāo),若不過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面為矩形, .側(cè)面底面.

(1)證明: ;

(2)設(shè)與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)的部分圖象,將函數(shù)f(x)的圖象向右平移個(gè)單位長(zhǎng)度得到g(x)的圖象,給出下列四個(gè)命題:

①函數(shù)f(x)的表達(dá)式為;

②g(x)的一條對(duì)稱軸的方程可以為

③對(duì)于實(shí)數(shù)m,恒有

④f(x)+g(x)的最大值為2.其中正確的個(gè)數(shù)有( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案