點(diǎn)P(4,4),圓C:(x-1)2+y2=5與橢圓E:
x2
18
+
y2
2
=1
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓左、右焦點(diǎn),直線PF1與圓C相切.設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
AP
AQ
的取值范圍.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專(zhuān)題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:分別求出
AP
=(1, 3)
,
AQ
=(x-3, y-1)
,利用向量的數(shù)量積公式,結(jié)合橢圓方程,即可確定
AP
AQ
的取值范圍.
解答: 解:∵A(3,1),P(4,4),
AP
=(1, 3)
,
設(shè)Q(x,y),則
AQ
=(x-3, y-1)

AP
AQ
=(x-3)+3(y-1)=x+3y-6

x2
18
+
y2
2
=1
,
即x2+(3y)2=18,而x2+(3y)2≥2|x|•|3y|,
∴-18≤6xy≤18.則(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范圍是[0,36]. 
∴x+3y的取值范圍是[-6,6],
因此,
AP
AQ
的取值范圍是[-12,0].
點(diǎn)評(píng):本題考查橢圓方程,考查向量的數(shù)量積公式,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓方程為
x2
16
+
y2
4
=1,則以點(diǎn)P(2,-1)為中點(diǎn)的弦所在直線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n的值為4,則輸出s的值是( 。
A、2B、6C、24D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,直線l:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長(zhǎng)為直徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)M(0,2)的直線l1與橢圓C交于G,H兩點(diǎn).設(shè)直線l1的斜率k>0,在x軸上是否存在點(diǎn)P(m,0),使得△PGH是以GH為底邊的等腰三角形.如果存在,求出實(shí)數(shù)m的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知離心率為
3
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線i交橢圓C于不同的兩點(diǎn)A、B.
(1)求橢圓C的方程;
(2)記直線MB、MA與x軸的交點(diǎn)分別為P、Q,若MP斜率為k1,MQ斜率為k2,求k1+k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為坐標(biāo)原點(diǎn),F(xiàn)是拋物線E:y2=4x的焦點(diǎn).
(Ⅰ)過(guò)F作直線l交拋物線E于P,Q兩點(diǎn),求
OP
OQ
的值;
(Ⅱ)過(guò)點(diǎn)T(t,0)作兩條互相垂直的直線分別交拋物線E于A,B,C,D四點(diǎn),且M,N分別為線段AB,CD的中點(diǎn),求△TMN的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)頂點(diǎn)為B(0,
3
)
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),離心率e=
1
2
,直線l:y=x+1與橢圓交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)求弦MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知焦點(diǎn)在x軸上的橢圓
x2
8
+
y2
b2
=1(b>0)有一個(gè)內(nèi)含圓x2+y2=
8
3
,該圓的垂直于x軸的切線交橢圓于點(diǎn)M,N,且
OM
ON
(O為原點(diǎn)).
(1)求b的值;
(2)設(shè)內(nèi)含圓的任意切線l交橢圓于點(diǎn)A、B.求證:
OA
OB
,并求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+y2=1(a>1)

(1)若橢圓C的上頂點(diǎn)為A,右焦點(diǎn)為F,直線AF與圓M:(x-3)2+(y-1)2=3相切,求橢圓C的方程.
(2)若Rt△ABC以A(0,1)為直角頂點(diǎn),邊AB,BC與橢圓交于兩點(diǎn)B,C,求Rt△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案