【題目】已知函數(shù),且
在
處的切線方程為
.
(1)求的值;
(2)設,若對任意的
,
,求實數(shù)
的取值范圍.
【答案】(1);(2)
.
【解析】
(1)對函數(shù)進行求導,根據(jù)導數(shù)的幾何意義,結合切線的方程,可以得到兩個方程,解方程組即可求出的值;
(2)對任意的,
,等價于
在
上的最小值不小于
的最大值,利用導數(shù)進行分類求解即可.
(1),
在
處的切線方程為
,所以有:
;
(2)由(1)可知:
顯然當時,
,函數(shù)單調遞減,當
時,
,函數(shù)單調遞增,故函數(shù)
在
上的最小值為:
.
.
當時,函數(shù)
的最大值為:
,于是由
可得:
,而
,所以
;
當時,函數(shù)
的最大值為:
,于是由
可得:
c無解;
當時,
若時,即
時,
,于是由
可得:
,因此
;
若時,即
時,函數(shù)
的最大值為:
,于是由
可得:
,綜上所述:實數(shù)
的取值范圍為:
.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓(
),點
為橢圓短軸的上端點,
為橢圓上異于
點的任一點,若
點到
點距離的最大值僅在
點為短軸的另一端點時取到,則稱此橢圓為“圓橢圓”,已知
.
(1)若,判斷橢圓
是否為“圓橢圓”;
(2)若橢圓是“圓橢圓”,求
的取值范圍;
(3)若橢圓是“圓橢圓”,且
取最大值,
為
關于原點
的對稱點,
也異于
點,直線
、
分別與
軸交于
、
兩點,試問以線段
為直徑的圓是否過定點?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
.
(1)求函數(shù)的單調區(qū)間;
(2)討論函數(shù)零點的個數(shù);
(3)若存在兩個不同的零點
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,
,
,
.
(1)求證:平面PAD;
(2)在棱AB上是否存在一點F,使得平面平面PCE?如果存在,求
的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,正確的個數(shù)是( )
①直線上有兩個點到平面的距離相等,則這條直線和這個平面平行;
②為異面直線,則過
且與
平行的平面有且僅有一個;
③直四棱柱是直平行六面體;
④兩相鄰側面所成角相等的棱錐是正棱錐.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分別是BF,CE上的點,AD∥BC,且AB=DE=2BC=2AF(如圖1),將四邊形ADEF沿AD折起,連結BE、BF、CE(如圖2).在折起的過程中,下列說法中正確的個數(shù)( �。�
①AC∥平面BEF;
②B、C、E、F四點可能共面;
③若EF⊥CF,則平面ADEF⊥平面ABCD;
④平面BCE與平面BEF可能垂直
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)在“精準扶貧”行動中,決定幫助一貧困山區(qū)將水果運出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內把180噸水果運輸?shù)交疖囌荆瑒t通過合理調配車輛運送這批水果的費用最少為______元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的首項為
,公差為
,等比數(shù)列
的首項為
,公比為
,其中
,且
.
(1)求證:,并由
推導
的值;
(2)若數(shù)列共有
項,前
項的和為
,其后的
項的和為
,再其后的
項的和為
,求
的比值.
(3)若數(shù)列的前
項,前
項、前
項的和分別為
,試用含字母
的式子來表示
(即
,且不含字母
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
,
.
(1)試判斷函數(shù)的奇偶性,并說明理由;
(2)若,求
在
上的最大值;
(3)若,求函數(shù)
在
上的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com