(2012•湖北)如圖1,∠ACB=45°,BC=3,過動(dòng)點(diǎn)A作AD⊥BC,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),
(1)當(dāng)BD的長(zhǎng)為多少時(shí),三棱錐A-BCD的體積最大;
(2)當(dāng)三棱錐A-BCD的體積最大時(shí),設(shè)點(diǎn)E,M分別為棱BC,AC的中點(diǎn),試在棱CD上確定一點(diǎn)N,使得EN⊥BM,并求EN與平面BMN所成角的大小.
分析:(1)設(shè)BD=x,先利用線面垂直的判定定理證明AD即為三棱錐A-BCD的高,再將三棱錐的體積表示為x的函數(shù),最后利用導(dǎo)數(shù)求函數(shù)的最大值即可;
(2)由(1)可先建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)向量的坐標(biāo),設(shè)出動(dòng)點(diǎn)N的坐標(biāo),先利用線線垂直的充要條件計(jì)算出N點(diǎn)坐標(biāo),從而確定N點(diǎn)位置,再求平面BMN的法向量,從而利用夾角公式即可求得所求線面角
解答:解:(1)設(shè)BD=x,則CD=3-x
∵∠ACB=45°,AD⊥BC,∴AD=CD=3-x
∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D
∴AD⊥平面BCD
∴VA-BCD=
1
3
×AD×S△BCD=
1
3
×(3-x)×
1
2
×x(3-x)=
1
6
(x3-6x2+9x)
設(shè)f(x)=
1
6
(x3-6x2+9x)  x∈(0,3),
∵f′(x)=
1
2
(x-1)(x-3),∴f(x)在(0,1)上為增函數(shù),在(1,3)上為減函數(shù)
∴當(dāng)x=1時(shí),函數(shù)f(x)取最大值
∴當(dāng)BD=1時(shí),三棱錐A-BCD的體積最大;
(2)以D為原點(diǎn),建立如圖直角坐標(biāo)系D-xyz,
由(1)知,三棱錐A-BCD的體積最大時(shí),BD=1,AD=CD=2
∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E(
1
2
,1,0),且
BM
=(-1,1,1)
設(shè)N(0,λ,0),則
EN
=(-
1
2
,λ-1,0)
∵EN⊥BM,∴
EN
BM
=0
即(-1,1,1)•(-
1
2
,λ-1,0)=
1
2
+λ-1=0,∴λ=
1
2
,∴N(0,
1
2
,0)
∴當(dāng)DN=
1
2
時(shí),EN⊥BM
設(shè)平面BMN的一個(gè)法向量為
n
=(x,y,z),由
n
BN
=0
n
BM
=0
BN
=(-1,
1
2
,0)
y=2x
z=-x
,取
n
=(1,2,-1)
設(shè)EN與平面BMN所成角為θ,則
EN
=(-
1
2
,-
1
2
,0)
sinθ=|cos<
EN
,
n
>|=|
EN
n
|
EN
|•|
n
|
|=
|-
1
2
-1|
6
×
2
2
=
3
2

∴θ=60°
∴EN與平面BMN所成角的大小為60°
點(diǎn)評(píng):本題主要考查了線面垂直的判定,折疊問題中的不變量,空間線面角的計(jì)算方法,空間向量、空間直角坐標(biāo)系的運(yùn)用,有一定的運(yùn)算量,屬中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北模擬)已知函數(shù)y=g(x)的圖象由f(x)=sin2x的圖象向右平移φ(0<φ<π)個(gè)單位得到,這兩個(gè)函數(shù)的部分圖象如圖所示,則φ=
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北)如圖,在圓心角為直角的扇形OAB中,分別以O(shè)A,OB為直徑作兩個(gè)半圓.在扇形OAB內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北)如圖,在圓心角為直角的扇形OAB中,分別以O(shè)A,OB為直徑作兩個(gè)半圓.在扇形OAB內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北)如圖,雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,切點(diǎn)分別為A,B,C,D.則:
(Ⅰ)雙曲線的離心率e=
5
+1
2
5
+1
2
;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值
S1
S2
=
5
+2
2
5
+2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案