【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x0時(shí),f(x)=-x2+ax.

(1)a=-2,求函數(shù)f(x)的解析式;

(2)若函數(shù)f(x)R上的單調(diào)減函數(shù),

a的取值范圍;

若對(duì)任意實(shí)數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實(shí)數(shù)t的取值范圍.

【答案】(1) .

(2) a0.t> .

【解析】

本試題主要是考查了抽象函數(shù)的解析式的求解和單調(diào)性的證明以及解不等式。

1)因?yàn)楫?dāng)時(shí),,又因?yàn)?/span>為奇函數(shù),所以,進(jìn)而得到解析式。

2)根據(jù)函數(shù)單調(diào)性,對(duì)于參數(shù)a分為正負(fù)來討論得到取值范圍。

3)因?yàn)?/span>,

所以是奇函數(shù),,而又因?yàn)?/span>上的單調(diào)遞減函數(shù),所以恒成立,分離參數(shù)的思想得到范圍。

1)當(dāng)時(shí),,又因?yàn)?/span>為奇函數(shù),

所以

所以…………………………6

2當(dāng)時(shí),對(duì)稱軸,所以上單調(diào)遞減,

由于奇函數(shù)關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相同,所以上單調(diào)遞減,

又在,在,

所以當(dāng)a0時(shí),R上的單調(diào)遞減函數(shù)

當(dāng)a>0時(shí),上遞增,在上遞減,不合題意

所以函數(shù)為單調(diào)函數(shù)時(shí),a的范圍為a………………………………………….10

因?yàn)?/span>

所以是奇函數(shù),…………………………12

又因?yàn)?/span>上的單調(diào)遞減函數(shù),所以恒成立,…………………14

所以恒成立, 所以…………………………16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距500千米,一輛貨車從甲地行駛到乙地,規(guī)定速度不得超過100千米小時(shí).已知貨車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(千米時(shí))的平方成正比,比例系數(shù)為0.01;固定部分為元().

(1)把全程運(yùn)輸成本(元)表示為速度(千米時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;

(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩條公路的交匯點(diǎn)處有一學(xué)校,現(xiàn)擬在兩條公路之間的區(qū)域內(nèi)建一工廠,在兩公路旁(異于點(diǎn))處設(shè)兩個(gè)銷售點(diǎn),且滿足(千米),(千米),設(shè).

(1)試用表示,并寫出的范圍;

(2)當(dāng)為多大時(shí),工廠產(chǎn)生的噪聲對(duì)學(xué)校的影響最小(即工廠與學(xué)校的距離最遠(yuǎn)).

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx﹣x+a+1
(1)若存在 x∈(0,+∞)使得f(x)≥0成立,求a的范圍;
(2)求證:當(dāng)x>1時(shí),在(1)的條件下, 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過A(0,1)和且與x軸相切的圓只有一個(gè),求的值及圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)m,n都有:f(mn)=f(m)+f(n)-1,

且當(dāng)x>0時(shí),有f(x)>1.

(1)求f(0).

(2)求證:f(x)在R上為增函數(shù).

(3)若f(1)=2,且關(guān)于x的不等式f(ax-2)+f(xx2)<3對(duì)任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:52,54,54,56,56,56,55,55,55,55.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加6后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)于20171024日在北京召開,會(huì)議提出“決勝全面建成小康社會(huì)”.某市積極響應(yīng)開展“脫貧攻堅(jiān)”,為2020年“全面建成小康社會(huì)”貢獻(xiàn)力量.為了解該市農(nóng)村“脫貧攻堅(jiān)“情況,從某縣調(diào)查得到農(nóng)村居民2011年至2017年家庭人均純收入(單位:百元)的數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年人均純收入(百元)

41

45

48

56

60

64

71

注:小康的標(biāo)準(zhǔn)是農(nóng)村居民家庭年人均純收入達(dá)到8000.

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,預(yù)測(cè)2020年該縣農(nóng)村居民家庭年人均純收入能否達(dá)到“全面建成小康社會(huì)”的標(biāo)準(zhǔn)?

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.

表示臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺(tái)機(jī)器在購(gòu)買易損零件上所需的費(fèi)用(單位:元),表示購(gòu)機(jī)的同時(shí)購(gòu)買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設(shè)這臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買個(gè)易損零件,或每臺(tái)都購(gòu)買個(gè)易損零件,分別計(jì)算這臺(tái)機(jī)器在購(gòu)買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買個(gè)還是個(gè)易損零件?

查看答案和解析>>

同步練習(xí)冊(cè)答案