【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),若在區(qū)間上的最小值為,求的取值范圍;

(Ⅲ)若對(duì)任意,有恒成立,求的取值范圍.

【答案】(1);(2);(3).

【解析】試題分析:Ⅰ)把a=1代入函數(shù)解析式,求導(dǎo)后求出f′(1),同時(shí)求出f(1),由點(diǎn)斜式寫出切線方程;
Ⅱ)求出函數(shù)的定義域,求出原函數(shù)的導(dǎo)函數(shù),進(jìn)一步求出導(dǎo)函數(shù)的零點(diǎn),分三種情況討論三種情況討論原函數(shù)的單調(diào)性,由f(x)在區(qū)間[1,e]上的最小值為-2求解的取值范圍;
Ⅲ)構(gòu)造輔助函數(shù)g(x)=f(x)+2x,問(wèn)題轉(zhuǎn)化為函數(shù)g(x)在(0,+∞)上單調(diào)遞增,求解的范圍.把函數(shù)g(x)求導(dǎo)后分 =0≠0討論, ≠0時(shí)借助于二次函數(shù)過(guò)定點(diǎn)及對(duì)稱軸列式求解.

試題解析:

(1)由,則

,所以切線方程為

(2)

當(dāng)時(shí), 上單調(diào)遞增,

當(dāng)時(shí), 上單調(diào)遞減, (舍)

當(dāng)時(shí), 上單調(diào)遞減, 上單調(diào)遞增, (舍)

綜上,

(3)令

,只要上單調(diào)遞增即可.

上恒成立.

上恒成立.

當(dāng)時(shí), 恒成立;

當(dāng)時(shí),原不等式

當(dāng)時(shí),原不等式,左邊無(wú)最大值,不合題意(舍)

綜上, .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)),

(1)求曲線在點(diǎn)處的切線方程;

(2)求的單調(diào)區(qū)間;

(3)設(shè),其中的導(dǎo)函數(shù),證明:對(duì)任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,如果x∈D,y∈D,使得f(x)=﹣f(y)成立,則稱函數(shù)f(x)為“Ω函數(shù)”.給出下列四個(gè)函數(shù):
①y=sinx;
②y=2x;
③y=
④f(x)=lnx,
則其中“Ω函數(shù)”共有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2015)的值為(
A.0
B.3
C.6
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求區(qū)間A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式ax2+2x+c>0的解集為 ,其中a,c∈R,則關(guān)于x的不等式﹣cx2+2x﹣a>0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(1)從0,1,2,3,4,5這六個(gè)數(shù)字任取3個(gè),問(wèn)能組成多少個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)?
(2)若(x6+3)(x2+ 5的展開(kāi)式中含x10項(xiàng)的系數(shù)為43,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣也開(kāi)始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況,市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣的問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到下表:(單位:人)

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出3人贈(zèng)送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式2xlnx≥﹣x2+ax﹣3對(duì)x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(0,+∞)
C.(﹣∞,4]
D.[4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案