(本小題滿分13分)如圖,已知平行四邊形和矩形所在的平面互相垂直,是線段的中點(diǎn).

(1)求證:;(2)求二面角的大小;

(3)設(shè)點(diǎn)為一動(dòng)點(diǎn),若點(diǎn)出發(fā),沿棱按照

的路線運(yùn)動(dòng)到點(diǎn),求這一過程中形成的三棱錐的體積的最小值.

(Ⅰ) 見解析   (Ⅱ)   (Ⅲ)


解析:

法一:(1)易求,從而,由三垂線定理知:.

(2)法一:易求由勾股定理知,

設(shè)點(diǎn)在面內(nèi)的射影為,過,連結(jié)

為二面角的平面角.

中由面積法易求,由體積法求得點(diǎn)到面的距離是

所以,所以求二面角的大小為.

法二:易求由勾股定理知,過,又過,連結(jié).則易證為二面角的平面角

.在中由面積法易求,從而于是

所以,在中由余弦定理求得.再在中由余弦定理求得.最后在中由余弦定理求得,所以求二面角的大小為.………… 8分

(3)設(shè)AC與BD交于O,則OF//CM,所以CM//平面FBD,當(dāng)P點(diǎn)在M或C時(shí),三棱錐P—BFD的體積的最小.. ……………… 13分

解法二:空間向量解法,略.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊答案