已知函數(shù)f(x)=x3+bx2+cx+d(x∈R),f′(0)=6設F(x)=f(x)-f′(x)若F(0)=0,F(xiàn)(1)=-11.
(1)求b、c、d的值.
(2)求F(x)的單調區(qū)間與極值.
解:(1)∵f(x)=x
3+bx
2+cx+d,∴f'(x)=3x
2+2bx+c.
由f′(0)=6得c=6,
從而F(x)=f(x)-f'(x)=x
3+bx
2+cx+d-(3x
2+2bx+c)=x
3+(b-3)x
2+(c-2b)x+d-c.
由于F(0)=0,F(xiàn)(1)=-11,
所以d-c=0,且(b-3)+(c-2b)+d-c=-11,
得b=14,c=6,d=6;
(2)由(1)知F(x)=x
3+11x
2-22x,從而F'(x)=3x
2+22x-22,
當F'(x)>0時,x<
或x>
,
當F'(x)<0時,
<x<
,
由此可知,(-∞,
)和(
,+∞)是函數(shù)F(x)的單調遞增區(qū)間;
(
,
)是函數(shù)F(x)的單調遞減區(qū)間;
F(x)在x=
時取得極大值,極大值為369,F(xiàn)(x)在x=
時取得極小值,極小值為-10.
分析:(1)根據(jù)F(x)=f(x)-f'(x)且F(0)=0,F(xiàn)(1)=-11,列方程組能夠求出b、c與d的值.
(2)對F(x)進行求導,F(xiàn)'(x)>0時的x的取值區(qū)間為單調遞增區(qū)間,F(xiàn)'(x)<0時的x的取值區(qū)間為單調遞減區(qū)間.F'(x)=0時的x,使得函數(shù)F(x)取到極值.
點評:本題主要考查對導數(shù)的理解.導數(shù)大于0時可求原函數(shù)的單調遞增區(qū)間,導數(shù)小于0時可求原函數(shù)的單調遞減區(qū)間,取到極值時導數(shù)為0.