設橢圓的左、右焦點分別為、是橢圓上的一點,,原點到直線的距離為,則橢圓的離心率為(   )
A.B.C.D.
B
因為原點到直線的距離為,所以。而,所以在中,由可得,則,所以,故選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

是橢圓上一點,分別是橢圓的左、右焦點,若,則是的大小為(   )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知過點D(0,-2)作拋物線C1=2py(p>0)的切線l,切點A在第二象限.
(Ⅰ)求點A的縱坐標;
(Ⅱ)若離心率為的橢圓(a>b>0)恰好經過點A,設直線l交橢圓的另一點為B,記直線l,OA,OB的斜率分別為k,k1,k2,若k1+2k2=4k,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點為F,橢圓C的離心率為,是它們的一個交點,且
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知,點A,B為橢圓上的兩點,且弦AB不平行于對稱軸,的中點,試探究是否為定值,若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓,且為常數(shù)),橢圓焦點在軸上,橢圓的長軸長與橢圓的短軸長相等,且橢圓與橢圓的離心率相等,則橢圓的方程為:                .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是橢圓的左、右頂點,是橢圓上任意一點,且直線的斜率分別為,若的最小值為,則橢圓的離心率為  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.已知拋物線的準線為,焦點為F,的圓心在軸的正半軸上,且與軸相切,過原點O作傾斜角為的直線,交于點A,交于另一點B,且AO=OB=2.
(1)求和拋物線C的方程;
(2)若P為拋物線C上的動點,求的最小值;
(3)過上的動點Q向作切線,切點為S,T,求證:直線ST恒過一個定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓Gy2=1.過點(m,0)作圓x2y2=1的切線l交橢圓GA,B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.如圖,設F2為橢圓的右焦點,點P在橢圓上,△POF2是面積為的正三角形,則b2的值是     ▲    

查看答案和解析>>

同步練習冊答案