【題目】為進一步深化“平安校園”創(chuàng)建活動,加強校園安全教育宣傳,某高中對該校學生進行了安全教育知識測試(滿分100分),并從中隨機抽取了200名學生的成績,經(jīng)過數(shù)據(jù)分析得到如圖1所示的頻數(shù)分布表,并繪制了得分在以及的莖葉圖,分別如圖23所示.

成績

頻數(shù)

5

30

40

50

45

20

10

1

1)求這200名同學得分的平均數(shù);(同組數(shù)據(jù)用區(qū)間中點值作代表)

2)如果變量滿足,則稱變量“近似滿足正態(tài)分布的概率分布”.經(jīng)計算知樣本方差為210,現(xiàn)在取分別為樣本平均數(shù)和方差,以樣本估計總體,將頻率視為概率,如果該校學生的得分“近似滿足正態(tài)分布的概率分布”,則認為該校的校園安全教育是成功的,否則視為不成功.試判斷該校的安全教育是否成功,并說明理由.

3)學校決定對90分及以上的同學進行獎勵,為了體現(xiàn)趣味性,采用抽獎的方式進行,其中得分不低于94的同學有兩次抽獎機會,低于94的同學只有一次抽獎機會,每次抽獎的獎金及對應的概率分別為:

獎金

50

100

概率

現(xiàn)在從不低于90同學中隨機選一名同學,記其獲獎金額為,以樣本估計總體,將頻率視為概率,求的分布列和數(shù)學期望.

(參考數(shù)據(jù):

【答案】165;(2)是成功的,理由詳見解析;(3)分布列詳見解析,數(shù)學期望為87.5

【解析】

1)每組的中間成績乘以對應的頻率再求和,就是所求的平均數(shù);

2)計算的概率,結合莖葉圖中的數(shù)據(jù)即可進行判斷;

3的可能取值為:50,100,150,200,計算每個數(shù)值對應的概率,進而得到的分布列,由此計算得出期望.

解(1)據(jù)頻數(shù)分布表得:

,

所以平均數(shù)為65

2)該校的安全教育是成功的.理由如下:

因為,所以,

,

而且據(jù)莖葉圖2,3知:得分小于36分的學生有3個,得分大于94分的有4個,

所以,

因為學生的得分都在之間,所以,

所以學生的得分“近似滿足正態(tài)分布的概率分布”,因此該校的安全教育是成功的.

3)設這名同學獲得的獎金為,則的可能取值為50100,150200

,

,

,

,

分布列為

50

100

150

200

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】新《水污染防治法》已由中華人民共和國第十二屆全國人民代表大會常務委員會第二十八次會議于2017627日通過,自201811日起施行.201831日,某縣某質檢部門隨機抽取了縣域內100眼水井,檢測其水質總體指標.

羅斯水質指數(shù)

02

24

46

68

810

水質狀況

腐敗污水

嚴重污染

污染

輕度污染

純凈

1)求所抽取的100眼水井水質總體指標值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

2)①由直方圖可以認為,100眼水井水質總體指標值服從正態(tài)分布,利用該正態(tài)分布,求落在(5.21,5.99)內的概率;

②將頻率視為概率,若某鄉(xiāng)鎮(zhèn)抽查5眼水井的水質,記這5眼水井水質總體指標值位于(610)內的井數(shù)為,求的分布列和數(shù)學期望.

附:①計算得所抽查的這100眼水井總體指標的標準差為

②若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓.

(Ⅰ)若的一個焦點為,且點上,求橢圓的方程;

(Ⅱ)已知上有兩個動點,為坐標原點,且,求線段的最小值(用表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線的焦點,點是拋物線上一點,且,直線過定點(40),與拋物線交于兩點,點在直線上的射影是.

1)求的值;

2)若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)城鄉(xiāng)居民儲蓄存款年底余額(單位:億元)如圖所示,下列判斷一定不正確的是(

A.城鄉(xiāng)居民儲蓄存款年底余額逐年增長

B.農(nóng)村居民的存款年底余額所占比重逐年上升

C.2019年農(nóng)村居民存款年底總余額已超過了城鎮(zhèn)居民存款年底總余額

D.城鎮(zhèn)居民存款年底余額所占的比重逐年下降

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,左右頂點分別為,,右焦點為,為橢圓上異于的動點,且面積的最大值為.

1)求橢圓的方程;

2)設直線軸交于點,過點的平行線交軸與點,試探究是否存在定點,使得以為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為12的正方體中,已知E,F分別為棱AB,的中點,若過點,E,F的平面截正方體所得的截面為一個多邊形,則該多邊形的周長為________,該多邊形與平面,ABCD的交線所成角的余弦值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面四邊形是直角梯形,底面,,,的中點.

1)求證:平面

2)若直線與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,,的中點,的交點.將沿折起到的位置,如圖

)證明:平面;

)若平面平面,求平面與平面夾角的余弦值.

查看答案和解析>>

同步練習冊答案