a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
|
|
a | 2 1 |
a | 2 2 |
a | 2 3 |
b | 2 1 |
b | 2 2 |
b | 2 3 |
x |
2x-2 |
8-3x |
a |
b |
a |
b |
a |
b |
x |
2x-2 |
8-3x |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
|
|
a | 2 1 |
a | 2 2 |
a | 2 3 |
b | 2 1 |
b | 2 2 |
b | 2 3 |
a |
b |
x |
2x-2 |
8-3x |
a |
b |
x |
2x-2 |
8-3x |
a |
b |
x |
2x-2 |
8-3x |
12+12+12 |
x+(2x-2)+(8-3x) |
3 |
6 |
2 |
a |
b |
x |
2x-2 |
8-3x |
x |
2x-2 |
8-3x |
2 |
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
|
|
a | 21 |
a | 22 |
a | 23 |
b | 21 |
b | 22 |
b | 23 |
x |
2x-2 |
8-3x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
請先閱讀:
設(shè)平面向量=(a1,a2),=(b1,b2),且與的夾角為è,
因為=||||cosè,
所以≤||||.
即,
當且僅當è=0時,等號成立.
(I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)試求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市西城區(qū)(北區(qū))高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com