平面點集M={(x,y)|x2-2x+2≤y≤6x-x2-3,且x,y∈Z},求M中元素的個數(shù).
考點:元素與集合關(guān)系的判斷
專題:常規(guī)題型,集合
分析:先根據(jù)x2-2x+2≤6x-x2-3,求出x的取值范圍,然后根據(jù)x,y∈Z確定x,y的取值,進面求出集合M中元素的個數(shù).
解答: 解:由x2-2x+2≤6x-x2-3,
得2x2-8x+5≤0,
解得:x∈[2-
6
2
,2+
6
2
]
∵x∈Z
∴x∈{1,2,3}
當(dāng)x=1時,1≤y≤2,
此時(1,2),(1,1)∈M,
當(dāng)x=2時,2≤y≤5,
此時(2,2),(2,3),(2,4),(2,5)∈M,
當(dāng)x=3時,5≤y≤6
此時(3,5),(3,6)∈M,
綜上所述共有8個
點評:本題考查了元素與集合的關(guān)系,解決本題的關(guān)鍵是根據(jù)x2-2x+2≤y≤6x-x2-3,求出x,y的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(α)=tsinα+cosα的最大值為g(t),則g(t)的最小值為(  )
A、1
B、0
C、|t|+1
D、
t2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

調(diào)查某桑場采桑員和輔助工桑毛蟲皮炎發(fā)病情況結(jié)果如下表:
采桑 不采桑 合計
患者人數(shù) 18 12
健康人數(shù) 5 78
合計
利用2×2列聯(lián)表的獨立性檢驗估計,“患桑毛蟲皮炎病與采!笔欠裼嘘P(guān)?認為兩者有關(guān)系會犯錯誤的概率是多少?(注:x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ACB與△ADB是有公共斜邊AB的兩個等腰直角三角形,平面ACB⊥平面ADB,求異面直線AC與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax2+bx+c(a≠0),若函數(shù)f(x+1)與f(x)的圖象關(guān)于y軸對稱,求證:f(x+
1
2
)為偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的上頂點為B1,左、右焦點為F1、F2,且F2和拋物線C2:y2=4x的焦點重合,△F1B1F2是正三角形.
(1)求橢圓C1的方程;
(2)過F2作直線l,與C1交于A、B兩點,與C2交于C、D兩點,求
S△F1CD
S△F1AB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(x1,y1),B(x2,y2)是橢圓C:x2+2y2=4上兩點,點M的坐標為(1,0).
(Ⅰ)當(dāng)A,B關(guān)于點M(1,0)對稱時,求證:x1=x2=1;
(Ⅱ)當(dāng)直線AB經(jīng)過點(0,3)時,求證:△MAB不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,|AB|=2
2
,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知
OR
OF
,
CR′
CF
,其中0<λ<1.
(Ⅰ)求證:直線ER與GR′的交點M在橢圓Γ:
x2
2
+y2=1上;
(Ⅱ)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F(xiàn)1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
.
1-1
13x
.
,則f-1(4)
 

查看答案和解析>>

同步練習(xí)冊答案