如圖,是⊙的直徑,是⊙上的點,的角平分線,過點點作,交的延長線于點,,垂足為點,

⑴求證:是⊙的切線    
⑵求證:
 證明:(1)連結,……2分
的角平分線,
,…4分
,,即是圓的切線    …6分
(2)連結,在中,  ………8分
是圓的切線,,易知 ………10分
,   ………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

選修4-4:坐標系與參數(shù)方程
已知極點O與原點重合,極軸與x軸的正半軸重合.點A,B的極坐標分別為(2,π),(2
2
,
π
4
)
,曲線C的參數(shù)方程為
x=sinα
y=1+cos2α
(α為參數(shù))

(Ⅰ)求△AOB的面積;
(Ⅱ)求直線AB與曲線C的交點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,四邊形ABCD為矩形,點M是BC的中點,CN=CA,用向量法證明:
(1)D、N、M三點共線;(2)若四邊形ABCD為正方形,則DN=BN.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBlAC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經(jīng)軸對稱變換后的圖形為A′C′.
①當t>
3
5
時,連接C′C,設四邊形ACC′A′的面積為S,求S關于t的函數(shù)關系式;
②當線段A′C′與射線BB,有公共點時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,設內(nèi)一點,且,則的面積與
面積之比等于( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點A(3,5)關于直線l:的對稱點在X軸上,則k是( ▲  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,E是⊙O內(nèi)接四邊形 ABCD兩條對角線的交點,CD延長線與過 A點的⊙O的切線交于F點,若∠ABD=440,∠AED=1000, , 則∠AFC的度數(shù)為(        )
A.780B.920C.560D.1450

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,P在AB的延長線上,PC切⊙O于C,PC=,BP=1,則⊙O半徑為(  )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本試卷共40分,考試時間30分鐘)
21.(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.
A. 選修4-1:幾何證明選講
如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點,延長
(1)求證:的中點;(2)求線段的長.

查看答案和解析>>

同步練習冊答案