定義:已知函數(shù)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)在[m,n] (m<n)上具有“DK”性質(zhì).
(1)判斷函數(shù)在[1,2]上是否具有“DK”性質(zhì),說(shuō)明理由;
(2)若在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.
解:(1)∵,x∈[1,2],
≤1,
∴函數(shù)在[1,2]上具有“DK”性質(zhì)……………………………………6分
(2),x∈[a,a+1],其對(duì)稱軸為
①當(dāng)≤a時(shí),即a≥0時(shí),函數(shù)
若函數(shù)具有“DK”性質(zhì),則有2≤a總成立,即a≥2.…………8分
②當(dāng)a<<a+1,即-2<a<0時(shí),
若函數(shù)具有“DK”性質(zhì),則有≤a總成立,
解得a∈.…………………………………………………………………10分
③當(dāng)≥a+1,即a≤-2時(shí),函數(shù)的最小值為
若函數(shù)具有“DK”性質(zhì),則有a+3≤a,解得a∈.………… 12分
綜上所述,若在[a,a+1]上具有“DK”性質(zhì),則a≥2.………… 14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)(),則函數(shù)在其定義域上是
A.單調(diào)遞減的偶函數(shù)B.單調(diào)遞減的奇函數(shù)
C.單凋遞增的偶函數(shù)D.單調(diào)遞增的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=x的單調(diào)遞減區(qū)間為(  )
A.(-∞,1)B.(-∞,0)
C.[0,+∞) D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題


已知偶函數(shù)在區(qū)間單調(diào)遞增,
則滿足取值
范圍是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,函數(shù)的最小值是          (     )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

表示兩數(shù)中的最小值,若函數(shù),則不等式的解集是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a=_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為兩個(gè)不相等的正實(shí)數(shù),則下列不等式正確的是(  )
A  B. C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則函數(shù)有(     )
   A.最小值8      B.最大值8        C.最小值11        D.最大值11

查看答案和解析>>

同步練習(xí)冊(cè)答案