【題目】某中學某社團為研究高三學生課下鉆研數(shù)學時間與數(shù)學考試中的解答題得分的關(guān)系,隨機調(diào)查了某中學高三某班名學生每周課下鉆研數(shù)學時間(單位:小時)與高三下學期期中考試數(shù)學解答題得分,數(shù)據(jù)如下表:
2 | 4 | 6 | 8 | 10 | 12 | |
30 | 38 | 44 | 48 | 50 | 54 |
(1)根據(jù)上述數(shù)據(jù),求出數(shù)學考試中的解答題得分與該學生課下鉆研數(shù)學時間的線性回歸方程,并預測某學生每周課下鉆研數(shù)學時間為小時其數(shù)學考試中的解答題得分;
(2)從這人中任選人,求人中至少有人課下鉆研數(shù)學時間不低于小時的概率.
參考公式:,其中, ;參考數(shù)據(jù):
【答案】(1)線性回歸方程: ,預測值為:分(2)
【解析】
(1)先求均值,再代入公式求,即得線性回歸方程;在線性回歸方程令,解得預測值;
(2)利用枚舉法確定總基本事件數(shù)以及所求事件包含的基本事件數(shù),最后根據(jù)古典概型概率公式求結(jié)果.
(1)
當時,
預測值為:分
(2)設(shè)“這2人中至少有一個人刻下鉆研數(shù)學時間不低于8小時為事件A”
所有基本事件如下:
(2,4),(2,6),(2,8),(2,10),(2,12),(4,6),(4,8),(4,10),(4,12), (6,8),(6,10),(6,12),(8,10),(8,12),(10,12)
共15個基本事件
事件A包含(2,8),(2,10),(2,12),(4,8),(4,10),(4,12),(6,8),(6,10)(6,12),(8,10),(8,12),(10,12)共12個基本事件
所以
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中是大于的常數(shù).
(1)求函數(shù)的定義域;
(2)當時, 求函數(shù)在上的最小值;
(3)若對任意恒有,試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線的直角坐標方程;
(2)若與交于,兩點,點的極坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代著名數(shù)學經(jīng)典,其中對勾股定理的論述,比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大;以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺,問這塊圓柱形木料的直徑是多少?長為0.5丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).己知弦尺,弓形高寸,估算該木材鑲嵌墻內(nèi)部分的體積約為( )(注:一丈=10尺=100寸,)
A.300立方寸B.305.6立方寸C.310立方寸D.316.6立方寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代的四書是指:《大學》、《中庸》、《論語》、《孟子》,甲、乙、丙、丁名同學從中各選一書進行研讀,已知四人選取的書恰好互不相同,且甲沒有選《中庸》,乙和丙都沒有選《論語》,則名同學所有可能的選擇有______種.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com