如圖所示,已知在正方體ABCD-A1B1C1D1中,E是DD1的中點,求證:DB1∥平面A1C1E.
考點:直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:要證DB1∥平面A1C1E,只需證明DB1平行于該平面內(nèi)的一條直線即可,連結(jié)B1D1并交A1C1于F,連結(jié)EF后可得DB1平行于EF,由線面平行的判定即得結(jié)論.
解答: 證明:如圖,
連結(jié)B1D1并交A1C1于F,連結(jié)EF,
根據(jù)正方體ABCD-A1B1C1D1的性質(zhì)可得F是B1D1的中點,
又E是DD1的中點,
所以EF是△D1B1D的中位線,
即DB1∥EF,
又因為EF?面A1C1E,DB1?面A1C1E,
所以DB1∥平面A1C1E.
點評:本題考查直線與平面平行的判定以及學(xué)生的空間想象能力和思維能力,創(chuàng)設(shè)判定定理成立的條件是解答本題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,C=2A,cosA=
3
4
,則
c
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式為an=6n-3,數(shù)列{bn}的通項公式為bn=5n-4,若an≤1000.bn≤1000,由數(shù)列{an}與數(shù)列{bn}中共有的項構(gòu)成數(shù)列{cn},則數(shù)列{cn}中共有
 
項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐P-ABCD的底面邊長為
2
,側(cè)棱長為2,M是側(cè)棱PC的中點,求異面直線AP與BM所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求曲線y=5
x
與直線y=2x-4平行的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=BC=
3
,AA1=
6
,則異面直線BD1與CC1所成的角等于(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=mx+1-m在區(qū)間[0,1]上無零點,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
1-x
ax
,其中a>0.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)0<a≤2時,求f(x)在x∈[1,2]上的最小值;
(3)求證:對于任意的n∈N*時,都有l(wèi)nn>
1
2
+
1
3
+…+
1
n
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}定義是:a1=1,a2=2,a3=3,an+3=
an+1an+2+7
an
,n∈N*,證明:該數(shù)列中的項都是整數(shù).

查看答案和解析>>

同步練習(xí)冊答案