已知B、C是兩個定點(diǎn),|BC|=6,且△ABC的周長為16.
(1)求三角形頂點(diǎn)A的軌跡S的方程;
(2)設(shè)過點(diǎn)B與BC垂直的直線l交軌跡S于D、E兩點(diǎn),求線段DE的長度.
考點(diǎn):軌跡方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)取BC所在直線為x軸,BC中點(diǎn)為原點(diǎn),建立如圖所示坐標(biāo)系,由題意可得AB+AC=10>BC,故頂點(diǎn)A的軌跡是以B、C為焦點(diǎn)的橢圓,除去與x軸的交點(diǎn),利用橢圓的定義和簡單性質(zhì)求出a、b 的值,即得頂點(diǎn)A的軌跡方程.
(2)求出D、E的縱坐標(biāo),即可求線段DE的長度.
解答: 解:(1)取BC所在直線為x軸,BC中點(diǎn)為原點(diǎn),建立如圖所示坐標(biāo)系,
∵|BC|=6,且△ABC的周長等于16,
∴AB+AC=10>BC,故頂點(diǎn)A的軌跡是以B、C為焦點(diǎn)的橢圓,除去與x軸的交點(diǎn),
∴2a=10,c=3,
∴b=4,故頂點(diǎn)A的軌跡方程為
x2
25
+
y2
16
=1
(y≠0).
(2)由題意可知:B點(diǎn)坐標(biāo)為(3,0)或(-3,0),則直線l的方程為x=±3,代入點(diǎn)A的軌跡方程,
得y=±
16
5
,∴|DE|=|yD-yE|=
32
5
點(diǎn)評:本題考查橢圓的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,注意軌跡方程中y≠0,這是解題的易錯點(diǎn).屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象連續(xù)不斷,若存在常數(shù)t(t∈R),使得f(x+t)+tf(x)=0對任意的實(shí)數(shù)x成立,則稱f(x)是回旋函數(shù),其回旋值為t.給出下列四個命題:
①函數(shù)f(x)=2為回旋函數(shù)的充要條件是回旋值t=-1;
②若y=ax(a>0,且a≠1)為回旋函數(shù),則回旋值t>1;
③若f(x)=sinωx(ω≠0)為回旋函數(shù),則其最小正周期不大于2;
④對任意一個回旋值為t(t≥0)的回旋函數(shù)f(x),方程f(x)=0均有實(shí)數(shù)根.
其中為真命題的是
 
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=6-x2 的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某空間幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓 C1:(x-5)2+(y-3)2=9 與圓C2:x2+y2-4x+2y-9=0 的位置關(guān)系是(  )
A、相交B、內(nèi)切C、外切D、內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=(a+bx)n(n?N*
(1)當(dāng)a=
1
4
,b=2時,展開式前3項(xiàng)的二項(xiàng)式系數(shù)和為37,求展開式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù);
(2)當(dāng)時a=0,b=
1
2
,n=2時,y=f(x)與過點(diǎn)K(0,-1)的直線l相交于A,B兩點(diǎn),點(diǎn)A關(guān)于y軸的對稱點(diǎn)為D.證明:點(diǎn)F(0,1)在直線BD上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=t(t≠-1),an+1-Sn=n.
(Ⅰ) 當(dāng)t為何值時,數(shù)列{an+1}是等比數(shù)列?
(Ⅱ) 設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,b1=1,點(diǎn)(Tn+1,Tn)在直線
x
n+1
-
y
n
=
1
2
上,在(Ⅰ)的條件下,若不等式
b1
a1+1
+
b2
a2+1
+…+
bn
an+1
≥m-
9
2+2an
對于n∈N*恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2為雙曲線C:x2-y2=1的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,∠F1PF2=60°,則P到y(tǒng)軸的距離為( 。
A、
3
2
B、
6
2
C、
10
2
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,當(dāng)n≥2時,Sn=2an,則S10=
 

查看答案和解析>>

同步練習(xí)冊答案