【題目】已知:函數(shù),數(shù)列
對(duì)
,總有
;
(1)求的通項(xiàng)公式;
(2)設(shè)是數(shù)列
的前
項(xiàng)和,且
,求
的取值范圍;
(3)若數(shù)列滿足:①
為
的子數(shù)列(即
中每一項(xiàng)都是
的項(xiàng),且按在
中的順序排列);②
為無窮等比數(shù)列,它的各項(xiàng)和為
,這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列
.寫出它的通項(xiàng)公式,并證明你的結(jié)論;若不存在,說明理由.
【答案】(1);(2)
;(3)存在,
或
.
【解析】
(1)可證為等差數(shù)列,從而可求其通項(xiàng).
(2)先求出,再求出
,化簡(jiǎn)后利用基本極限可得所求的極限(與
有關(guān)),解關(guān)于
的不等式后可得所求的范圍.
(3)先證明無窮等比數(shù)列的公比為
且
為奇數(shù),再就
分類討論可求
的通項(xiàng).
(1)因?yàn)?/span>,故
即
,所以
為等差數(shù)列,
故即
.
(2),
所以
,
因?yàn)?/span>,所以
,
所以即
,
所以的取值范圍為
.
(3)設(shè)的公比為
且
為互素的奇數(shù),
,
則對(duì)于任意,總有
,
所以,
若,因?yàn)?/span>
互素,
有因數(shù)
,但
為有限數(shù),矛盾, 故
.
故公比.
當(dāng)時(shí),無窮等比數(shù)列的各項(xiàng)之和為
,故
,
此時(shí).
當(dāng)時(shí),無窮等比數(shù)列的各項(xiàng)之和為
,故
(舍).
當(dāng)時(shí),無窮等比數(shù)列的各項(xiàng)之和為
,故
.
此時(shí).
當(dāng)時(shí),無窮等比數(shù)列的各項(xiàng)之和為
,故
,
所以,
若,則無窮等比數(shù)列的各項(xiàng)之和為
,舍;
若,則無窮等比數(shù)列的各項(xiàng)之和為
,舍.
綜上,所求的無窮等比數(shù)列的通項(xiàng)為后
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點(diǎn),A、B分別是C1、C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列五個(gè)命題:①直線的斜率
,則直線
的傾斜角的范圍是
;②直線
:
與過
,
兩點(diǎn)的線段相交,則
或
;③如果實(shí)數(shù)
,
滿足方程
,那么
的最大值為
;④直線
與橢圓
恒有公共點(diǎn),則
的取值范圍是
;⑤方程
表示圓的充要條件是
或
;正確的是( )
A.②③B.③④C.②⑤D.②③⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在
軸上的橢圓,離心率
,且橢圓過點(diǎn)
.
(1)求橢圓的方程;
(2)設(shè)橢圓左、右焦點(diǎn)分別為,過
的直線
與橢圓交于不同的兩點(diǎn)
,則
的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為
,已知
為常數(shù))
.
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)記集合,若
中僅有3個(gè)元素,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,O是正方形
的中心,E、F分別為棱AB、
的中點(diǎn),則( )
A.直線EF與共面B.
C.平面平面
D.OF與
所成角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B是焦距為的橢圓
的上、下頂點(diǎn),P是橢圓上異于頂點(diǎn)的任意一點(diǎn),直線PA,PB的斜率之積為
.
(1)求橢圓的方程;
(2)若C,D分別是橢圓的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足,連接CM交橢圓于點(diǎn)E,試問:x軸上是否存在定點(diǎn)T,使得
恒成立?若存在,求出點(diǎn)T坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線:
和直線
:
,射線
的一個(gè)法向量為
,點(diǎn)
為坐標(biāo)原點(diǎn),且
,直線
和
之間的距離為2,點(diǎn)
,
分別是直線
和
上的動(dòng)點(diǎn),
,
于點(diǎn)
,
于點(diǎn)
.
(1)若,求
的值;
(2)若,
,且
,試求
的最小值;
(3)若,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次體育興趣小組的聚會(huì)中,要安排6人的座位,使他們?cè)谌鐖D所示的6個(gè)椅子中就坐,且相鄰座位(如1與2,2與3)上的人要有共同的體育興趣愛好.現(xiàn)已知這6人的體育興趣愛好如下表所示,且小林坐在1號(hào)位置上,則4號(hào)位置上坐的是
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛好 | 籃球,網(wǎng)球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網(wǎng)球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車 |
A.小方B.小張C.小周D.小馬
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com