三種顏色的卡片,分別寫有a,b,c,d,e,從中取5張,三種顏色都有的取法(字母不用各不相同)有多少種?
考點(diǎn):計數(shù)原理的應(yīng)用
專題:應(yīng)用題,排列組合
分析:可以先把5個卡片分成三組,再每組涂上一種顏色,分組時可以按3,1,1分組,也可按1,2,2分組,注意若為平均分組時,平均分成幾組,應(yīng)該除以幾的階乘.分組后,每組涂不同的顏色,再讓三組進(jìn)行全排列即可.
解答: 解:∵取出的5個卡片有三種顏色,
∴先把5個卡片分成3組,可以是3,1,1,也可以是1,2,2
若按3,1,1,分組,共有
C
3
5
C
2
5
C
1
5
A
2
2
=250種分法
若按1,2,2,分組,共有
C
1
5
C
2
5
C
2
5
A
2
2
=250種分法
∴共有500種分法
再讓三組取三種不同顏色,共有A33=6種不同方法
最后兩步相乘,共有500×6=3000種不同的取法.
點(diǎn)評:本題主要考查了分步計數(shù)原理和分類計數(shù)原理在排列組合問題中的應(yīng)用,注意二者的區(qū)分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓與雙曲線
y2
4
-
x2
12
=1
的焦點(diǎn)相同,且它們的離心率之和等于
14
5

(Ⅰ)求橢圓方程;
(Ⅱ)過橢圓內(nèi)一點(diǎn)M(1,1)作一條弦AB,使該弦被點(diǎn)M平分,求弦AB所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R},若A∩B=[1,3],求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)如果log 
1
2
|x-
π
3
|≥log 
1
2
π
2
那么sinx的取值范圍是
 
;
(2)如果函數(shù)f(x)=ax(ax-3a2-1)(a>0且a≠1)在區(qū)間[0,+∞)上是增函數(shù),那么實(shí)數(shù)a的取值
范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD和矩形ADEF,平面ABCD⊥平面ADEF,AD=2AB,P為BC的中點(diǎn),M在AF上且AM=2MF,DP交AC與N點(diǎn).
(1)求證:MN∥平面BCEF;
(2)若四邊形ABCD為矩形,且AF=AB,求DM與平面MAP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,且滿足S17>0,S18<0,則
S1
a1
,
S2
a2
,…,
Sn
an
 (n∈N*,n≤18))中最大的項是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+2x+(2-a)lnx
(1)當(dāng)a=-2時,求f(x)的最大值
(2)若在函數(shù)f(x)的定義域內(nèi)存在區(qū)間D,使得該函數(shù)在區(qū)間D上為減函數(shù),求a的取值范圍
(3)若曲線C:y=f(x)在點(diǎn)x=1處的切線l與C有且只有一個公共點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
x
1-x
在( 。
A、(-∞,1)∪(1,+∞)上是增函數(shù)
B、(-∞,1)∪(1,+∞)上是減函數(shù)
C、(-∞,1),(1,+∞)分別是增函數(shù)
D、(-∞,1),(1,+∞)分別是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若α是第二象限角,sin(π-α)=
10
10
.求
2sin2
α
2
+8sin
α
2
cos
α
2
+8cos2
α
2
-5
2
sin(α-
π
4
)
 的值;
(2)已知函數(shù)f(x)=tan(2x+
π
4
),設(shè)α∈(0,
π
4
),若f(
α
2
)=2cos2α,求α的大。

查看答案和解析>>

同步練習(xí)冊答案