已知集合M={x|
x+1
≥0}
,集合N={x|x-1<0},則M∩N=( 。
A、f(x)=ln|x-1|
B、{x|x<1}
C、{x|-1<x<1}
D、{x|-1≤x<1}
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:求出M中x的范圍確定出M,求出N中不等式的解集確定出N,求出兩集合的交集即可.
解答: 解:由M中
x+1
≥0,得到x+1≥0,即x≥-1,
∴M={x|x≥-1},
由N中x-1<0,解得:x<1,
∴N={x|x<1},
則M∩N={x|-1≤x<1},
故選:D.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}滿足a3=5,a8=-5
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{an}的前n項(xiàng)和Sn及使得Sn最大的序號(hào)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
.
AB
=(5,-3),C(-1,3),
.
CD
=2
.
AB
,則點(diǎn)D的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={1,2,3,4,5,6},A={2,3,6},則∁UA=(  )
A、{1,4,5}
B、{2,3,6}
C、{1,4,6}
D、{4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x+1
+
3-x
+
1
2-x
的定義域?yàn)?div id="ah7xodr" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

巳知各項(xiàng)均為正數(shù)的等差數(shù)列{an}前三項(xiàng)的和為27,且滿足a1a3=65.?dāng)?shù)列{bn}的前n項(xiàng)和為Sn,且對(duì)一切正整數(shù)n,點(diǎn)(n,Sn)都在函數(shù)f(x)=
3x+1
2
-
3
2
的圖象上.
(Ⅰ) 求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn =anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差為d,a3=10,a6=22
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a1,a2-m,a3-m構(gòu)成公比為正數(shù)q的等比數(shù)列{bn}的前3項(xiàng),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

大座鐘的鐘擺每2秒完成一次完整的擺動(dòng),鐘擺與它的靜止位置所成的最大角為10°,若鐘擺與它的靜止位置所成的角θ按簡(jiǎn)諧振動(dòng)的方式改變,則角θ(單位:度)與時(shí)間t(單位:秒)之間的函數(shù)關(guān)系為
 
(當(dāng)鐘擺處于豎直位置時(shí)開始計(jì)時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1
tan2x-2tanx+2
的值域是(  )
A、(-∞,1]
B、(0,1]
C、[1,+∞)
D、[
1
2
,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案