設函數(shù)f(x)=(x-3)3+x-1,{an}是公差不為0的等差數(shù)列,f(a1)+f(a2)+…+f(a7)=14,則a1+a2+…+a7=( )
A.0
B.7
C.14
D.21
【答案】分析:根據(jù)f(x)=(x-3)3+x-1,可得f(x)-2=(x-3)3+x-3,構造函數(shù)g(x)=f(x)-2,從而g(x)關于(3,0)對稱,利用f(a1)+f(a2)+…+f(a7)=14,可得g(a1)+g(a2)+…+g(a7)=0,從而g(a4)為g(x)與x軸的交點,由此可求a1+a2+…+a7的值.
解答:解:∵f(x)=(x-3)3+x-1,∴f(x)-2=(x-3)3+x-3,
令g(x)=f(x)-2
∴g(x)關于(3,0)對稱
∵f(a1)+f(a2)+…+f(a7)=14
∴f(a1)-2+f(a2)-2+…+f(a7)-2=0
∴g(a1)+g(a2)+…+g(a7)=0
∴g(a4)為g(x)與x軸的交點
因為g(x)關于(3,0)對稱,所以a4=3
∴a1+a2+…+a7=7a4=21,
故選D.
點評:本題考查數(shù)列與函數(shù)的綜合,考查函數(shù)的對稱性,考查數(shù)列的性質,需要一定的基本功.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調研數(shù)學試卷(一)(解析版) 題型:解答題

設函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省蘇州市高考數(shù)學一模試卷(解析版) 題型:解答題

設函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

查看答案和解析>>

同步練習冊答案