等比數(shù)列{an}中,若2a4=a6-a5,則公比q的值為


  1. A.
    -1
  2. B.
    2
  3. C.
    -1或2
  4. D.
    ±2
C
分析:根據(jù)所給的等比數(shù)列的三項之間的關(guān)系,把這三項都寫成第四項與公比的積的形式,約分化簡得到關(guān)于公比的一元二次方程,解方程即可.
解答:∵等比數(shù)列{an}中,2a4=a6-a5,
∴2a4=q2a4-qa4
∴2=q2-q
∴q2-q-2=0
∴(q-2)(q+1)=0
∴q=2或q=-1,
故選C.
點評:本題考查等比數(shù)列的通項公式,本題解題的關(guān)鍵是把等式整理成關(guān)于公比的方程,這里是應(yīng)用方程思想來解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2=18,a4=8,則公比q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項公式an
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設(shè)bn=an
9
10
n,證明:對任意的正整數(shù)n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前n項和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于( 。

查看答案和解析>>

同步練習(xí)冊答案