已知雙曲線x2-y2=2若直線n的斜率為2 ,直線n與雙曲線相交于A、B兩點(diǎn),線段AB的中點(diǎn)為P,
(1)求點(diǎn)P的坐標(biāo)(x,y)滿足的方程(不要求寫出變量的取值范圍);
(2)過(guò)雙曲線的左焦點(diǎn)F1,作傾斜角為的直線m交雙曲線于M、N兩點(diǎn),期中,F(xiàn)2是雙曲線的右焦點(diǎn),求△F2MN的面積S關(guān)于傾斜角的表達(dá)式。

(1)(可以寫出范圍:),不寫也不扣分);
(2)

解析試題分析:(1) 這類問題基本方法是設(shè)直線方程為,代入雙曲線方程化簡(jiǎn)后可得,同時(shí)設(shè)中點(diǎn)坐標(biāo)為,則有,又,即,再代入即得出所求中點(diǎn)軌跡方程;對(duì)于求圓錐曲線中點(diǎn)軌跡方程,我們還可以采取設(shè)而不求的方法,即設(shè),中點(diǎn),只要把兩點(diǎn)坐標(biāo)代入圓錐曲線方程,所得兩式相減,即可得出的關(guān)系,前者是直線的斜率,后者正是點(diǎn)坐標(biāo)的關(guān)系,由此可很快得到所求軌跡方程;(2) 設(shè),,由于,因此,而可以用直線方程與雙曲線方程聯(lián)立方程組,消去可得的一元二次方程,從這個(gè)方程可得,從而得三角形面積,但要注意當(dāng)直線斜率不存在時(shí)需另外求.
試題解析:(1)解法1:設(shè)直線方程為,
代入雙曲線方程得:, 2分
.設(shè)、兩點(diǎn)坐標(biāo)分別為、,則有;又由韋達(dá)定理知:, 4分
所以,即得點(diǎn)的坐標(biāo)所滿足的方程.    5分
注:,點(diǎn)的軌跡為兩條不包括端點(diǎn)的射線.
解法2:設(shè)兩點(diǎn)坐標(biāo)分別為、,則有,,兩式相減得:(*).  2分
又因?yàn)橹本的斜率為2,所以,再由線段中點(diǎn)的坐標(biāo),得
.  4分
代入(*)式即得點(diǎn)的坐標(biāo)所滿足的方程.      5分
(2),,直線軸垂直時(shí),,此時(shí),△的面積=.         6分
直線軸不垂直時(shí),直線方程為,         7分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OAl的距離等于4?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓=1上任一點(diǎn)P,由點(diǎn)Px軸作垂線PQ,垂足為Q,設(shè)點(diǎn)MPQ上,且=2,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),且滿足 (O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,焦距為的橢圓的兩個(gè)頂點(diǎn)分別為,且與n共線.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓有兩個(gè)不同的交
點(diǎn),且原點(diǎn)總在以為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知分別是橢圓的左,右頂點(diǎn),點(diǎn)在橢圓 上,且直線與直線的斜率之積為

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)為橢圓上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),直線,與橢圓的右準(zhǔn)線分別交于點(diǎn)
①在軸上是否存在一個(gè)定點(diǎn),使得?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
②已知常數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓:的左焦點(diǎn)為,且過(guò)點(diǎn).

(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)P(-2,0)的直線與橢圓E交于A、B兩點(diǎn),且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C=1(a>b>0)的離心率e,右焦點(diǎn)到直線=1的距離d,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于AB兩點(diǎn),證明,點(diǎn)O到直線AB的距離為定值,并求弦AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線,點(diǎn),過(guò)的直線交拋物線兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)等于,求直線的斜率;
(2)設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)點(diǎn)分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為.
(I)求橢圓的方程;
(II)設(shè)直線(直線、不重合),若、均與橢圓相切,試探究在軸上是否存在定點(diǎn),使點(diǎn)的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案