如圖,平面平面,是正方形,,且、分別是線段、的中點.

(1)求證:平面;
(2)求異面直線、所成角的余弦值.

(1)詳見試題解析;(2)異面直線、所成角的余弦值為.

解析試題分析:(Ⅰ)取AB的中點M,易得PB//EM且點M在平面EFG內(nèi),從而證得PB//平面EFG .
(2)過G作BD的平行線,該平行線與EG所成的角,就是異面直線EG與BD所成的角.
試題解析:(1)證明:取中點,連結(jié)
從而共面
而在中,,平面,即平面            6分
(2)取中點,連結(jié)
 所以就是異面直線的夾角
的中點,連結(jié)
由已知可求得:

所以即為所求                              12分
考點:1、線面平行的判定;2、異面直線所成的角.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱中,,點分別為的中點.

(Ⅰ)證明:∥平面;
(Ⅱ)求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,且各棱長均相等.D,E,F分別為棱AB,BC,A1C1的中點.

(Ⅰ)證明EF//平面A1CD;
(Ⅱ)證明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直線BC與平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

將棱長為的正方體截去一半(如圖甲所示)得到如圖乙所示的幾何體,點分別是的中點.

(Ⅰ)證明:;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2(1)PD.

(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,PA=AB=4,G為PD的中點,E是AB的中點.

(Ⅰ)求證:AG∥平面PEC;  
(Ⅱ)求點G到平面PEC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

四棱錐中,⊥底面,,,.

(Ⅰ)求證:⊥平面;
(Ⅱ)若側(cè)棱上的點滿足,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點,且2BE=EP.

(1)證明:AC⊥DE;
(2)若PC=BC,求二面角E-AC一P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面為矩形,,分別是的中點,

(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面

查看答案和解析>>

同步練習冊答案