已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,S4=2S2+4,bn=
1+an
an

(Ⅰ)求公差d的值;
(Ⅱ)若a1=-
5
2
,求數(shù)列{bn}的通項(xiàng)公式bn
分析:(Ⅰ)由S4=2S2+4,利用等差數(shù)列的前n項(xiàng)和公式,能夠求出公差d的值.
(Ⅱ)因?yàn)?span id="08uiigw" class="MathJye">a1=-
5
2
,d=1,所以數(shù)列{an}的通項(xiàng)公式為an=a1+(n-1)=n-
7
2
,由bn=
1+an
an
,能夠求出數(shù)列{bn}的通項(xiàng)公式bn
解答:解:(Ⅰ)因?yàn)镾4=2S2+4,
所以4a1+
3×4
2
d=2(2a1+d)+4
,
解d=1.(6分)
(Ⅱ)因?yàn)?span id="cgmo2uk" class="MathJye">a1=-
5
2
,
所以數(shù)列{an}的通項(xiàng)公式為an=a1+(n-1)=n-
7
2

因?yàn)?span id="0sggyoa" class="MathJye">bn=
1+an
an

所以bn=1+
1
an
=1+
1
n-
7
2

bn=
2n-5
2n-7
(12分)
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差為d的等差數(shù)列,{bn}是公比為q的等比數(shù)列
(1)若an=3n+1,是否存在m,n∈N*,有am+am+1=ak?請(qǐng)說(shuō)明理由;
(2)若bn=aqn(a、q為常數(shù),且aq≠0)對(duì)任意m存在k,有bm•bm+1=bk,試求a、q滿足的充要條件;
(3)若an=2n+1,bn=3n試確定所有的p,使數(shù)列{bn}中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中{an}的一項(xiàng),請(qǐng)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差為d的等差數(shù)列,{bn}是公比為q的等比數(shù)列.
(1)若an=3n+1,是否存在m、k∈N*,有am+am+1=ak?說(shuō)明理由;
(2)找出所有數(shù)列{an}和{bn},使對(duì)一切n∈N*,
an+1an
=bn
,并說(shuō)明理由;
(3)若a1=5,d=4,b1=q=3,試確定所有的p,使數(shù)列{an}中存在某個(gè)連續(xù)p項(xiàng)的和是數(shù)列{bn}中的一項(xiàng),請(qǐng)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、已知{an}是公差為-2的等差數(shù)列,a1=12,是|a1|+|a2|+|a3|+…+|a20|=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,S4=2S2+4,b2=
1
9
,T2=
4
9

(1)求公差d的值;
(2)若對(duì)任意的n∈N*,都有Sn≥S8成立,求a1的取值范圍;
(3)若a1=
1
2
,判別方程Sn+Tn=2010是否有解?說(shuō)明理由.國(guó).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn.等比數(shù)列{bn}的前n項(xiàng)和為Tn,且S4=2S2+4,b2=
1
9
,T2=
4
9

(Ⅰ)求公差d的值;
(Ⅱ)若對(duì)任意的n∈N*,都有Sn≥S8成立,求a1的取值范圍;
(Ⅲ)若a1=
1
2
,判別方程Sn+Tn=55是否有解?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案