【題目】為了解高新產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營(yíng)狀況,市場(chǎng)研究人員對(duì)該公司2019年下半年連續(xù)六個(gè)月的利潤(rùn)進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)列表如下:
月份 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
月利潤(rùn)(萬(wàn)元) | 110 | 130 | 160 | 150 | 200 | 210 |
(1)請(qǐng)用相關(guān)系數(shù)說明月利潤(rùn)y(單位:萬(wàn)元)與月份代碼x之間的關(guān)系的強(qiáng)弱(結(jié)果保留兩位小數(shù)),求y關(guān)于x的線性回歸方程,并預(yù)測(cè)該公司2020年1月份的利潤(rùn);
(2)甲公司新研制了一款產(chǎn)品,需要采購(gòu)一批新型材料,己知生產(chǎn)新型材料的乙企業(yè)對(duì)A、B兩種型號(hào)各100件新型材料進(jìn)行模擬測(cè)試,統(tǒng)計(jì)兩種新型材料使用壽命頻數(shù)如下表所示:
使用壽命 材料類型 | 1個(gè)月 | 2個(gè)月 | 3個(gè)月 | 4個(gè)月 | 總計(jì) |
A | 15 | 40 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
現(xiàn)有采購(gòu)成本分別為10萬(wàn)元/件和12萬(wàn)元/件的A、B兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個(gè)月,不同類型的新型材料損壞的時(shí)間各不相同,經(jīng)甲公司測(cè)算,平均每件新型材料每月可以帶來5萬(wàn)元收入,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每件新型材料的使用壽命都是整數(shù)月,且以頻率估計(jì)每件新型材料使用壽命的概率,如果你是甲公司的負(fù)責(zé)人,以每件新型材料產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款新型材料?
參考公式:相關(guān)系數(shù);
回歸直線方程為,其中,.
參考數(shù)據(jù):,,,.
【答案】(1),y與x具有很強(qiáng)的線性相關(guān)關(guān)系;;230萬(wàn)元;(2)采購(gòu)A型材料
【解析】
(1)首先求出相關(guān)系數(shù),判斷與的相關(guān)關(guān)系,再用最小二乘法求出回歸直線方程,最后代入計(jì)算可得;
(2)求出,兩種新材料的使用壽命的平均值,進(jìn)行比較得結(jié)論.
(1)因?yàn)?/span>,,
所以
因?yàn)?/span>,所以y與x具有很強(qiáng)的線性相關(guān)關(guān)系
由題意知,,
,
,
y關(guān)于x的線性回歸方程為
2020年1月對(duì)應(yīng)的是,則
即預(yù)測(cè)公司2020年1月(即時(shí))的利潤(rùn)為230萬(wàn)元;
(2)由頻率估計(jì)概率,A型材料可使用1個(gè)月,2個(gè)月,3個(gè)月、4個(gè)月的概率分別為0.15,0.4,0.35,0.1.
所以A型材料利潤(rùn)的數(shù)學(xué)期望為(萬(wàn)元);
B型材料可使用1個(gè)月,2個(gè)月,3個(gè)月、4個(gè)月的概率分別為0.1,0.3,0.4,0.2
B型材料利潤(rùn)的數(shù)學(xué)期望為
(萬(wàn)元);
,故應(yīng)該采購(gòu)A型材料.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線y2=4x的焦點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),設(shè)點(diǎn)M(3,0).若△MAB的面積為,則|AB|=( )
A.2B.4C.D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且4Sn,3Sn+1,2Sn+2成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=0,bn+1﹣bn=1,設(shè)cn,求數(shù)列{cn}的前2n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)是我國(guó)民間為紀(jì)念愛國(guó)詩(shī)人屈原的一個(gè)傳統(tǒng)節(jié)日.某市為了解端午節(jié)期間粽子的銷售情況,隨機(jī)問卷調(diào)查了該市1000名消費(fèi)者在去年端午節(jié)期間的粽子購(gòu)買量(單位:克),所得數(shù)據(jù)如下表所示:
購(gòu)買量 | |||||
人數(shù) | 100 | 300 | 400 | 150 | 50 |
將煩率視為概率
(1)試求消費(fèi)者粽子購(gòu)買量不低于300克的概率;
(2)若該市有100萬(wàn)名消費(fèi)者,請(qǐng)估計(jì)該市今年在端午節(jié)期間應(yīng)準(zhǔn)備多少千克棕子才能滿足市場(chǎng)需求(以各區(qū)間中點(diǎn)值作為該區(qū)間的購(gòu)買量).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地貫徹黨的“五育并舉”的教育方針,某市要對(duì)全市中小學(xué)生“體能達(dá)標(biāo)”情況進(jìn)行了解,決定通過隨機(jī)抽樣選擇幾個(gè)樣本校對(duì)學(xué)生進(jìn)行體能達(dá)標(biāo)測(cè)試,并規(guī)定測(cè)試成績(jī)低于60分為不合格,否則為合格,若樣本校學(xué)生不合格人數(shù)不超過其總?cè)藬?shù)的5%,則該樣本校體能達(dá)標(biāo)為合格.已知某樣本校共有1000名學(xué)生,現(xiàn)從中隨機(jī)抽取40名學(xué)生參加體能達(dá)標(biāo)測(cè)試,首先將這40名學(xué)生隨機(jī)分為甲、乙兩組,其中甲乙兩組學(xué)生人數(shù)的比為3:2,測(cè)試后,兩組各自的成績(jī)統(tǒng)計(jì)如下:甲組的平均成績(jī)?yōu)?/span>70,方差為16,乙組的平均成績(jī)?yōu)?/span>80,方差為36.
(1)估計(jì)該樣本校學(xué)生體能測(cè)試的平均成績(jī);
(2)求該樣本校40名學(xué)生測(cè)試成績(jī)的標(biāo)準(zhǔn)差s;
(3)假設(shè)該樣本校體能達(dá)標(biāo)測(cè)試成績(jī)服從正態(tài)分布,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,利用估計(jì)值估計(jì)該樣本校學(xué)生體能達(dá)標(biāo)測(cè)試是否合格?
(注:1.本題所有數(shù)據(jù)的最后結(jié)果都精確到整數(shù);2若隨機(jī)變量z服從正態(tài)分布,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是(t為參數(shù)),直線l與曲線C相交于A,B兩點(diǎn).
(1)求的長(zhǎng);
(2)求點(diǎn)到A,B兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,把滿足條件(對(duì)任意的)的所有數(shù)列構(gòu)成的集合記為.
(1)若數(shù)列的通項(xiàng)為,判斷是否屬于,并說明理由;
(2)若數(shù)列的通項(xiàng)為,判斷是否屬于,并說明理由;
(3)若數(shù)列是等差數(shù)列,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P與點(diǎn)的距離比它到直線的距離小1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)P為直線上任一點(diǎn),過點(diǎn)P作曲線C的切線,,切點(diǎn)分別為A,B,直線,與y軸分別交于M,N兩點(diǎn),點(diǎn)、的縱坐標(biāo)分別為m,n,求證:m與n的乘積為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com