若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),則使得f(x)<f(2)的x取值范圍是
x>2或x<-2
x>2或x<-2
分析:先確定函數(shù)在(0,+∞)上是減函數(shù),f(x)<f(2)等價于f(|x|)<f(2),由此可得x取值范圍.
解答:解:∵函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),
∴函數(shù)在(0,+∞)上是減函數(shù)
∵f(x)<f(2)
∴f(|x|)<f(2)
∴|x|>2
∴x>2或x<-2
故答案為:x>2或x<-2
點評:本題考查函數(shù)的奇偶性與單調(diào)性,解題的關(guān)鍵是確定函數(shù)在(0,+∞)上是減函數(shù),將f(x)<f(2)轉(zhuǎn)化為f(|x|)<f(2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(-3)=0,則使得x[f(x)+f(-x)]<0的x的取值范圍是
(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且對一切x>0,y>0滿足f(xy)=f(x)+f(y),則不等式f(x+6)+f(x)≤2f(4)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2-x+1,則x<0時,f(x)的表達式是
f(x)=-x2-x-1,(x<0)
f(x)=-x2-x-1,(x<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的奇函數(shù),在(-∞,0)上為減函數(shù),且f(2)=0,則使得f(x)<0的x的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案