(文科)如果A={x|x2-x=0,x∈R},B={x|x2+x=0,x∈R},那么A∩B=


  1. A.
    0
  2. B.
  3. C.
    {0}
  4. D.
    {-1,0,1}
C
分析:集合A與集合B的公共元素構(gòu)成集合A∩B,由此利用A={x|x2-x=0,x∈R}={0,1},B={x|x2+x=0,x∈R}={0,-1},能求出A∩B.
解答:∵A={x|x2-x=0,x∈R}={0,1},
B={x|x2+x=0,x∈R}={0,-1},
∴A∩B={0}.
故選C.
點(diǎn)評:本題考查交集及其運(yùn)算,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項(xiàng).
[理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)如果A={x|x2-x=0,x∈R},B={x|x2+x=0,x∈R},那么A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省成都外國語學(xué)校高三(下)第五次月考數(shù)學(xué)試卷(文理合卷)(解析版) 題型:選擇題

(文科)如果A={x|x2-x=0,x∈R},B={x|x2+x=0,x∈R},那么A∩B=( )
A.0
B.∅
C.{0}
D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項(xiàng).
[理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案