已知函數(shù)f(x)是定義在R上單調(diào)遞減的奇函數(shù),則滿足不等式f[f(t-1)]<0的實數(shù)t的取值范圍是
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由奇函數(shù)的性質(zhì)得f(0)=0,再利用函數(shù)的單調(diào)性逐步轉(zhuǎn)化不等式f[f(t-1)]<0,直到求出t的取值范圍.
解答: 解:由題意知,函數(shù)f(x)是定義在R上的奇函數(shù),則f(0)=0,
因為函數(shù)f(x)在R上單調(diào)遞減,且f[f(t-1)]<0=f(0),
所以f(t-1)>0=f(0),則t-1<0,解得t<1,
即實數(shù)t的取值范圍是(-∞,1),
故答案為:(-∞,1).
點評:本題考查奇函數(shù)的性質(zhì),以及函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

兩平行直線3x-4y-3=0和6x-8y+5=0之間的距離是(  )
A、
11
10
B、
8
5
C、
4
5
D、
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x(x≤0)
log3x(x>0)
,則f[f(
1
2
)]
=( 。
A、-1
B、2
C、
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠BAC=
π
6
且BC=1.若E為BC的中點,則AE的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式0<1-x2≤1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:a2+b2-ab≥a+b-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右頂點分別是A、B,左、右焦點分別是F1、F2,若|AF1|,|A B|,|AF2|成等差數(shù)列,則此雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體內(nèi),有兩球相外切,并且又分別與正方體相內(nèi)切.
(1)求兩球的半徑之和;
(2)當(dāng)兩球的半徑是多少時,兩球體積之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x-y≤0
x+y-1≥0
y≤3
,則z=x+2y的最小值為( 。
A、1
B、
3
2
C、2
D、
5
2

查看答案和解析>>

同步練習(xí)冊答案