精英家教網 > 高中數學 > 題目詳情

設函數
(1)當時,求曲線處的切線方程;
(2)當時,求函數的單調區(qū)間;
(3)在(2)的條件下,設函數,若對于[1,2],
[0,1],使成立,求實數的取值范圍.

(1) ;(2)遞增區(qū)間為(1,2),遞減區(qū)間為(0,1),;(3).

解析試題分析:(1)將代入,分別得到,再由點斜式得到處的切線方程為;(2)將代入得到,從而得到遞增區(qū)間為(1,2),遞減區(qū)間為(0,1),;(3)先將題設條件轉化為在[0,1]上的最小值不大于在[1,2]上的的最小值.再得到,然后討論的范圍,又在[1,2]上最小值為.由單調性及從而得到的取值范圍為.
試題解析:(1)函數的定義域為
,
時,,
,故.
所以處的切線方程為.
(2)當時,.
故當時,;當時,.
所以函數的遞增區(qū)間為(1,2),遞減區(qū)間為(0,1),.
(3)由(2)知,在(1,2)上為增函數,
所以在[1,2]上的最小值為,
若對于[1,2],[0,1],使成立在[0,1]上的最小值不大于在[1,2]上的的最小值.

時,在[0,1]上為增函數,與題設不符.
時,,由,得;
時,在[0,1]上為減函數,.
綜上所述,的取值范圍為.
考點:1.導數;2.直線的方程;3.函數的單調性與最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,函數
(I)試求f(x)的單調區(qū)間。
(II)若f(x)在區(qū)間上是單調遞增函數,試求實數a的取值范圍:
(III)設數列是公差為1.首項為l的等差數列,數列的前n項和為,求證:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)當時,求的單調區(qū)間
(Ⅱ)若不等式有解,求實數m的取值菹圍;
(Ⅲ)定義:對于函數在其公共定義域內的任意實數,稱的值為兩函數在處的差值。證明:當時,函數在其公共定義域內的所有差值都大干2。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數的值;
(Ⅲ)設,求在區(qū)間上的最小值.(為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的最大值為0,其中。
(1)求的值;
(2)若對任意,有成立,求實數的最大值;
(3)證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)當時,恒成立,求實數的取值范圍;
(Ⅱ)若對一切,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數其中,曲線在點處的切線方程為
(I)確定的值;
(II)設曲線在點處的切線都過點(0,2).證明:當時,
(III)若過點(0,2)可作曲線的三條不同切線,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若且函數在區(qū)間上存在極值,求實數的取值范圍;
(2)如果當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=+3-ax.
(1)若f(x)在x=0處取得極值,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關于x的不等式f(x)≥+ax+1在x≥時恒成立,試求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案