(2009•鹽城一模)現(xiàn)有下列命題:
①命題“?x∈R,x2+x+1=0”的否定是“?x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤-1},則A∩(?RB)=A;
③函數(shù)f(x)=sin(ωx+?)(ω>0)是偶函數(shù)的充要條件是?=kπ+
π
2
(k∈Z)
;
④若非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|
,則
b
與(
a
-
b
)
的夾角為60°.
其中正確命題的序號有
②③
②③
.(寫出所有你認為真命題的序號)
分析:①根據(jù)特稱命題的否定判斷.②利用集合的基本運算判斷.③利用三角函數(shù)的性質(zhì)判斷.④利用向量的數(shù)量積的應用判斷.
解答:解:①特稱命題的否是全稱命題,所以命題“?x∈R,x2+x+1=0”的否定是“?x∈R,x2+x+1≠0”;所以①錯誤.
②?RB={x|x>-1},所以A∩(?RB)={x|x>0}=A,正確.
③函數(shù)f(x)=sin(ωx+?)(ω>0)是偶函數(shù),則?=kπ+
π
2
(k∈Z)
;正確.
④若|
a
|=|
b
|=|
a
-
b
|
,則以
a
,
b
,
a
-
b
為邊長的三角形為正三角形,則
b
與(
a
-
b
)
的夾角為120°,所以④錯誤.
故答案為:②③.
點評:本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•鹽城一模)若關于x的不等式x2<2-|x-a|至少有一個負數(shù)解,則實數(shù)a的取值范圍是
[-
9
4
,2)
[-
9
4
,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•鹽城一模)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為
27
.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時即終止.每個球在每一次被取出的機會是等可能的,用ξ表示取球終止時所需要的取球次數(shù).
(Ⅰ)求袋中原有白球的個數(shù);
(Ⅱ)求隨機變量ξ的概率分布及數(shù)學期望Eξ;
(Ⅲ)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•鹽城一模)某單位為了了解用電量y度與氣溫x°C之間的關系,隨機統(tǒng)計了某4天的用電量與當天氣溫,并制作了對照表:
氣溫(°C) 18 13 10 -1
用電量(度) 24 34 38 64
由表中數(shù)據(jù)得線性回歸方程
?
y
=bx+a
中b=-2,預測當氣溫為-4°C時,用電量的度數(shù)約為
68
68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•鹽城一模)在平面直角坐標平面內(nèi),不難得到“對于雙曲線xy=k(k>0)上任意一點P,若點p在x軸、y軸上的射影分別為M、N,則|PM|-|PN|必為定值k”.類比于此,對于雙曲線
x2
a2
-
y2
b2
(a>0,b>0)上任意一點P,類似的命題為:
若點P在兩漸近線上的射影分別為M、N,則|PM|•|PN|必為定值
a2b2
a2+b2
若點P在兩漸近線上的射影分別為M、N,則|PM|•|PN|必為定值
a2b2
a2+b2

查看答案和解析>>

同步練習冊答案