如圖是函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象,M、N分別是最大、最小值點(diǎn),O為坐標(biāo)原點(diǎn)且,則A•ω的值為( )

A.
B.
C.
D.
【答案】分析:由已知中函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象,我們可以求出M,N的坐標(biāo),進(jìn)而求出向量,的坐標(biāo),進(jìn)而根據(jù),我們易求出A的值,求出函數(shù)的周期,我們易求出ω的值,進(jìn)而求出A•ω的值.
解答:解:由已知中易得M點(diǎn)的坐標(biāo)為(,A),N點(diǎn)的坐標(biāo)為(,-A)
=(,A),=(,-A)
,則-A2=0
解得A=
又由函數(shù)y=Asin(ωx+φ)的周期為π,則ω=2
則A•ω=
故選C
點(diǎn)評:本題考查的知識點(diǎn)是由y=Asin(ωx+φ)的部分圖象確定其解析式,其中根據(jù)函數(shù)的圖象,確定出函數(shù)的最大值及最小值坐標(biāo)及函數(shù)的周期,進(jìn)而求出A及ω的值,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是函數(shù)y=Asin(ωx+φ)(A<0,ω>0,|φ|≤
π
2
)圖象的一部分.為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)( 。
A、向左平移
π
3
個單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變
B、向左平移
π
3
個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C、向左平移
π
6
個單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變
D、向左平移
π
6
個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)的圖象的一段,它的解析式為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
在一個周期內(nèi)的圖象,M、N分別是最大、最小值點(diǎn),且
OM
ON
,則A•ω的值為(  )
A、
π
6
B、
2
π
6
C、
5
π
4
D、
7
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
在一個周期內(nèi)的圖象,M、N分別是其最高點(diǎn)、最低點(diǎn),MC⊥x軸,且矩形MBNC的面積為
7
π
12
,則A•ω的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+?)(x∈R,A>0,ω>0,0<?<
π
2
)在區(qū)間[-
π
6
,
6
]
上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx(x∈R)的圖象上的所有的點(diǎn)( 。

查看答案和解析>>

同步練習(xí)冊答案