已知定點A(0,-1),點B在圓F:x2+(y-1)2=16上運動,F(xiàn)為圓心,線段AB的垂直平分線交BF于P.
(I)求動點P的軌跡E的方程;若曲線Q:x2-2ax+y2+a2=1被軌跡E包圍著,求實數(shù)a的最小值.
(II)已知M(-2,0)、N(2,0),動點G在圓F內(nèi),且滿足|MG|•|NG|=|OG|2,求的取值范圍.

【答案】分析:(I)由題意得|PA|=|PB|,得到|PA|+|PF|=|PB|+|PF|=r=4>|AF|=2,根據(jù)橢圓的定義可求得動點P的軌跡E的方程;根據(jù)橢圓的幾何性質(zhì)(有界性),可求得實數(shù)a的最小值;
(II)設(shè)G(x,y),并代入|MG|•|NG|=|OG|2,得到關(guān)于x,y的一個方程,點G在圓F:x2+(y-1)2=16內(nèi),得到關(guān)于x,y的一個不等式,可求得y的取值范圍,把點G的坐標代入中,利用不等式的基本性質(zhì)分析即可求得結(jié)果.
解答:解:(I)由題意得|PA|=|PB|,
∴|PA|+|PF|=|PB|+|PF|=r=4>|AF|=2
∴P點軌跡是以A、F為焦點的橢圓.
設(shè)橢圓方程為=1(a>b>0),
則2a=4,a=2,a2-b2=c2=1,故b2=3,
∴點p的軌跡方程為=1
曲線Q:x2-2ax+y2+a2=1化為(x-a)2+y2=1,
則曲線Q是圓心在(a,0),半徑為1的圓.
而軌跡E:=1為焦點在Y軸上的橢圓,短軸上的頂點為
結(jié)合它們的圖象知:若曲線Q被軌跡E包圍著,則--1
∴a的最小值為-+1;
(II)設(shè)G(x,y),由|MG|•|NG|=|OG|2
得:
化簡得x2-y2=2,即x2=y2+2
=(x+2,y)•(x-2,y)=x2+y2-4=2(y2-1).
∵點G在圓F內(nèi):x2+(y-1)2=16內(nèi),∴x2+(y-1)2<16
又G滿足x2=y2+2
∴y2+2+(y-1)2<16⇒<y<⇒0≤y2,
∴-2≤2(y2-1)<12+3
的取值范圍為).
點評:此題是個難題.考查橢圓的定義和幾何性質(zhì),以及點圓位置關(guān)系和向量的數(shù)量積的坐標運算,綜合性較強,特別是問題(II)的設(shè)置,轉(zhuǎn)化為求最值問題,增加題目的難度.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定點A(0,1),點B在直線x+y=0上運動,當線段AB最短時,點B的坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知定點A(0,-1),點B在圓F:x2+(y-1)2=16上運動,F(xiàn)為圓心,線段AB的垂直平分線交BF于P.
(I)求動點P的軌跡E的方程;若曲線Q:x2-2ax+y2+a2=1被軌跡E包圍著,求實數(shù)a的最小值.
(II)已知M(-2,0)、N(2,0),動點G在圓F內(nèi),且滿足|MG|•|NG|=|OG|2,求
MG
NG
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點A(0,1),B(0,-1),C(1,0),動點P滿足:
AP
BP
=k|
PC
|2,
(1)求動點P的軌跡方程,并說明方程表示的曲線類型;
(2)當k=2,求|2
AP
+
BP
|的最大,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科)已知定點A(0,-1),點M(x,y)在曲線y=x2(0<x<3)上運動,過點M作垂直于x軸的直線l,l交直線y=9于點N.
(1)求△AMN面積f (x);
(2)求f (x)的最大值及此時點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點A(0,1)、B(0,-1)、C(1,0),動點P滿足:
AP
BP
=k|
PC
|2
(k∈R).
(1)求動點P的軌跡方程,并說明方程表示的圖形;
(2)當k=2時,求|
AP
+
BP
|
的最大值和最小值.

查看答案和解析>>

同步練習冊答案